期刊论文详细信息
Virology Journal
Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption
Shanmuga Sozhamannan3  Scott Stibitz1  Richard Calendar4  Timothy D Read2  Truong Luu3  Matroner George3  Carol Chapman3  Alfred J Mateczun3  Vishwesh Mokashi3  Shakia Dorsey3  Amy Butani3  Kristin M Willner3  Arya Akmal3  Peter E Chen3  Roger D Plaut1  Kimberly A Bishop-Lilly3 
[1] Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA;Department of Human Genetics, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA;NMRC-Frederick, 8400 Research Plaza, Ft. Detrick, MD 21702, USA;Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
关键词: B. anthracis;    SNP;    Mutation mapping;    WGS;    Phage resistance;   
Others  :  1153420
DOI  :  10.1186/1743-422X-9-246
 received in 2012-07-05, accepted in 2012-10-24,  发布年份 2012
PDF
【 摘 要 】

Background

Spontaneous Bacillus anthracis mutants resistant to infection by phage AP50c (AP50R) exhibit a mucoid colony phenotype and secrete an extracellular matrix.

Methods

Here we utilized a Roche/454-based whole genome sequencing approach to identify mutations that are candidates for conferring AP50c phage resistance, followed by genetic deletion and complementation studies to validate the whole genome sequence data and demonstrate that the implicated gene is necessary for AP50c phage infection.

Results

Using whole genome sequence data, we mapped the relevant mutations in six AP50R strains to csaB. Eleven additional spontaneous mutants, isolated in two different genetic backgrounds, were screened by PCR followed by Sanger sequencing of the csaB gene. In each spontaneous mutant, we found either a non-synonymous substitution, a nonsense mutation, or a frame-shift mutation caused by single nucleotide polymorphisms or a 5 base pair insertion in csaB. All together, 5 and 12 of the 17 spontaneous mutations are predicted to yield altered full length and truncated CsaB proteins respectively. As expected from these results, a targeted deletion or frame-shift mutations introduced into csaB in a different genetic background, in a strain not exposed to AP50c, resulted in a phage resistant phenotype. Also, substitution of a highly conserved histidine residue with an alanine residue (H270A) in CsaB resulted in phage resistance, suggesting that a functional CsaB is necessary for phage sensitivity. Conversely, introduction of the wild type allele of csaB in cis into the csaB deletion mutant by homologous recombination or supplying the wild type CsaB protein in trans from a plasmid restored phage sensitivity. The csaB mutants accumulated cell wall material and appeared to have a defective S-layer, whereas these phenotypes were reverted in the complemented strains.

Conclusions

Taken together, these data suggest an essential role for csaB in AP50c phage infection, most likely in phage adsorption. (The whole genome sequences generated from this study have been submitted to GenBank under SRA project ID: SRA023659.1 and sample IDs: AP50 R1: SRS113675.1, AP50 R2: SRS113676.1, AP50 R3: SRS113728.1, AP50 R4: SRS113733.1, AP50 R6: SRS113734.1, JB220 Parent: SRS150209.1, JB220 Mutant: SRS150211.1).

【 授权许可】

   
2012 Bishop-Lilly et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407094825435.pdf 1676KB PDF download
Figure 6. 53KB Image download
Figure 5. 26KB Image download
Figure 4. 54KB Image download
Figure 3. 47KB Image download
Figure 2. 172KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Labrie SJ, Samson JE, Moineau S: Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010, 8(5):317-327.
  • [2]Stern A, Sorek R: The phage-host arms race: Shaping the evolution of microbes. Bioessays 2011, 33(1):43-51.
  • [3]Hagens S, Loessner MJ: Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol 2007, 76(3):513-519.
  • [4]McAuliffe ORR, Fitzgerald GF: The new phage biology: from genomics to applications. Norfolk, UK: Caister Academic Press; 2007.
  • [5]McKinstry MER: Phages: their role in bacterial pathogenesis and biotechnology Use of phages in therapy and bacterial detection. Washington DC: ASM press; 2005.
  • [6]Petty NK, Evans TJ, Fineran PC, Salmond GP: Biotechnological exploitation of bacteriophage research. Trends Biotechnol 2007, 25(1):7-15.
  • [7]Sulakvelidze A, Alavidze Z, Morris JG Jr: Bacteriophage therapy. Antimicrob Agents Chemother 2001, 45(3):649-659.
  • [8]Schuch R, Nelson D, Fischetti VA: A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002, 418(6900):884-889.
  • [9]CDC: Center for disease control and prevention: Anthrax Q & A: Diagnosis. 2002. http://www.bt.cdc.gov/agent/anthrax/faq/diagnosis.asp webcite
  • [10]Abshire TG, Brown JE, Ezzell JW: Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 2005, 43(9):4780-4788.
  • [11]Brown ER, Cherry WB: Specific identification of Bacillus anthracis by means of a variant bacteriophage. J Infect Dis 1955, 96(1):34-39.
  • [12]Davison S, Couture-Tosi E, Candela T, Mock M, Fouet A: Identification of the Bacillus anthracis (gamma) phage receptor. J Bacteriol 2005, 187(19):6742-6749.
  • [13]Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE: Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 1985, 49(2):291-297.
  • [14]Ruhfel RE, Robillard NJ, Thorne CB: Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis. J Bacteriol 1984, 157(3):708-711.
  • [15]Thorne CB: Transduction in Bacillus cereus and Bacillus anthracis. Bacteriol Rev 1968, 32(4 Pt 1):358-361.
  • [16]Yelton DB, Thorne CB: Transduction in Bacillus cereus by each of two bacteriophages. J Bacteriol 1970, 102(2):573-579.
  • [17]Walter TM, Aronson AI: Transduction of certain genes by an autonomously replicating Bacillus thuringiensis phage. Appl Environ Microbiol 1991, 57(4):1000-1005.
  • [18]Nagy E: A highly specific phage attacking Bacillus anthracis strain Sterne. Acta Microbiol Acad Sci Hung 1974, 21(3–4):257-263.
  • [19]Nagy E, Pragai B, Ivanovics G: Characteristics of phage AP50, an RNA phage containing phospholipids. J Gen Virol 1976, 32(1):129-132.
  • [20]Nagy E, Ivanovics G: Association of probable defective phage particles with lysis by bacteriophage AP50 in Bacillus anthracis. J Gen Microbiol 1977, 102(1):215-219.
  • [21]Nagy E, Herczegh O, Ivanova N: Lipid-containing anthrax phage AP50: Structural proteins and life cycle. J Gen Virol 1982, 62:323-329.
  • [22]Nagy E, Ivanovics G: Anthrax-specific "AP 50-like" phages isolated from Bacillus cereus strains. Acta Microbiol Acad Sci Hung 1982, 29(2):89-98.
  • [23]Sozhamannan S, McKinstry M, Lentz SM, Jalasvuori M, McAfee F, Smith A, Dabbs J, Ackermann HW, Bamford JK, Mateczun A, et al.: Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol 2008, 74(21):6792-6796.
  • [24]Davis BM, Waldor MK: High-throughput sequencing reveals suppressors of Vibrio cholerae rpoE mutations: one fewer porin is enough. Nucleic Acids Res 2009, 37(17):5757-5767.
  • [25]Hobert O: The impact of whole genome sequencing on model system genetics: get ready for the ride. Genetics 2010, 184(2):317-319.
  • [26]Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Legare D, Ouellette M: Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res 2009, 19(7):1214-1223.
  • [27]Chen PE, Willner KM, Butani A, Dorsey S, George M, Stewart A, Lentz SM, Cook CE, Akmal A, Price LB, et al.: Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing. PLoS One 2010, 5:8.
  • [28]Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A: Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 2000, 19(17):4473-4484.
  • [29]Janes BK, Stibitz S: Routine markerless gene replacement in Bacillus anthracis. Infect Immun 2006, 74(3):1949-1953.
  • [30]Fouet A: The surface of Bacillus anthracis. Mol Aspects Med 2009, 30(6):374-385.
  • [31]Kern J, Ryan C, Faull K, Schneewind O: Bacillus anthracis surface-layer proteins assemble by binding to the secondary cell wall polysaccharide in a manner that requires csaB and tagO. J Mol Biol 2010, 401(5):757-775.
  • [32]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
  • [33]Stewart AC, Osborne B, Read TD: DIYA: a bacterial annotation pipeline for any genomics lab. Bioinformatics 2009, 25(7):962-963.
  • [34]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38((Database issue)):D211-222.
  • [35]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [36]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.
  • [37]Pomerantsev AP, Kalnin KV, Osorio M, Leppla SH: Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 2003, 71(11):6591-6606.
  • [38]Lauer P, Chow MY, Loessner MJ, Portnoy DA, Calendar R: Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 2002, 184(15):4177-4186.
  • [39]Simon R, Priefer UB, Puhler A: A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotech 1983, 1(9):784-791.
  文献评价指标  
  下载次数:62次 浏览次数:14次