期刊论文详细信息
Respiratory Research
Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis
Huaping Dai3  Chen Wang3  Dianhua Jiang1  Jiurong Liang1  Dingyuan Jiang2  Shuhong Li2  Xuefeng Xu4  Ying Li5  Xiaoxi Huang5  Jing Geng2 
[1] Department of Medicine Pulmonary Division and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA;Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China;China–Japan Friendship Hospital, Beijing 100029, P.R. China;National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing 100730, P.R. China;Department of Medical Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
关键词: Idiopathic pulmonary fibrosis;    PTEN;    Phenotype transformation;    Fibroblasts;    USP13;   
Others  :  1233501
DOI  :  10.1186/s12931-015-0286-3
 received in 2015-05-14, accepted in 2015-10-01,  发布年份 2015
PDF
【 摘 要 】

Background

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by fibroblastic foci and progressive scarring of the pulmonary parenchyma. IPF fibroblasts display increased proliferation and enhanced migration and invasion, analogous to cancer cells. This transformation-like phenotype of fibroblasts plays an important role in the development of pulmonary fibrosis, but the mechanism for this is not well understood.

Methods

In this study, we compared gene expression profiles in fibrotic lung tissues from IPF patients and normal lung tissues from patients with primary spontaneous pneumothorax using a cDNA microarray to examine the mechanisms involved in the pathogenesis of IPF. In a cDNA microarray, we found that USP13 was decreased in lung tissues from patients with IPF, which was further confirmed by results from immunohistochemistry and western blot assays. Then, we used RNA interference in MRC-5 cells to inhibit USP13 and evaluated its effects by western blot, real-time RT-PCR, bromodeoxyuridine incorporation, and transwell assays. We also used co-immunoprecipitation and immunofluorescence staining to identify the correlation between USP13 and PTEN in IPF.

Results

USP13 expression levels were markedly reduced in fibroblastic foci and primary IPF fibroblast lines. The depletion of USP13 resulted in the transformation of fibroblasts into an aggressive phenotype with enhanced proliferative, migratory, and invasive capacities. Additionally, USP13 interacted with PTEN and mediated PTEN ubiquitination and degradation in lung fibroblasts.

Conclusions

Down-regulation of USP13 mediates PTEN protein loss and fibroblast phenotypic change, and thereby plays a crucial role in IPF pathogenesis.

【 授权许可】

   
2015 Geng et al.

【 预 览 】
附件列表
Files Size Format View
20151121093107809.pdf 2724KB PDF download
Fig. 7. 39KB Image download
Fig. 6. 124KB Image download
Fig. 5. 38KB Image download
Fig. 4. 32KB Image download
Fig. 3. 51KB Image download
Fig. 2. 22KB Image download
Fig. 1. 204KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK et al.. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011; 183:788-824.
  • [2]Cai M, Zhu M, Ban C, Su J, Ye Q, Liu Y et al.. Clinical features and outcomes of 210 patients with idiopathic pulmonary fibrosis. Chin Med J (Engl). 2014; 127:1868-73.
  • [3]Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001; 134:136-51.
  • [4]Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol. 1998; 275:L1192-9.
  • [5]Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU. The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2002; 166:173-7.
  • [6]Tiitto L, Bloigu R, Heiskanen U, Paakko P, Kinnula VL, Kaarteenaho-Wiik R. Relationship between histopathological features and the course of idiopathic pulmonary fibrosis/usual interstitial pneumonia. Thorax. 2006; 61:1091-5.
  • [7]Visscher DW, Myers JL. Histologic spectrum of idiopathic interstitial pneumonias. Proc Am Thorac Soc. 2006; 3:322-9.
  • [8]Maher TM, Wells AU, Laurent GJ. Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J. 2007; 30:835-9.
  • [9]Thannickal VJ, Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc. 2006; 3:350-6.
  • [10]Hung C, Linn G, Chow YH, Kobayashi A, Mittelsteadt K, Altemeier WA et al.. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013; 188:820-30.
  • [11]Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M et al.. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol. 2001; 24:591-8.
  • [12]Suganuma H, Sato A, Tamura R, Chida K. Enhanced migration of fibroblasts derived from lungs with fibrotic lesions. Thorax. 1995; 50:984-9.
  • [13]Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R et al.. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011; 208:1459-71.
  • [14]Cai GQ, Zheng A, Tang Q, White ES, Chou CF, Gladson CL et al.. Downregulation of FAK-related non-kinase mediates the migratory phenotype of human fibrotic lung fibroblasts. Exp Cell Res. 2010; 316:1600-9.
  • [15]Xia H, Khalil W, Kahm J, Jessurun J, Kleidon J, Henke CA. Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol. 2010; 176:2626-37.
  • [16]White ES, Thannickal VJ, Carskadon SL, Dickie EG, Livant DL, Markwart S et al.. Integrin alpha4beta1 regulates migration across basement membranes by lung fibroblasts: a role for phosphatase and tensin homologue deleted on chromosome 10. Am J Respir Crit Care Med. 2003; 168:436-42.
  • [17]White ES, Atrasz RG, Hu B, Phan SH, Stambolic V, Mak TW et al.. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med. 2006; 173:112-21.
  • [18]Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S et al.. Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol. 2013; 15:1486-94.
  • [19]Vancheri C, Failla M, Crimi N, Raghu G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J. 2010; 35:496-504.
  • [20]Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci. 2001; 114:2375-82.
  • [21]Jablonska E, Markart P, Zakrzewicz D, Preissner KT, Wygrecka M. Transforming growth factor-beta1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts. J Biol Chem. 2010; 285:11638-51.
  • [22]Xu X, Wan X, Geng J, Li F, Yang T, Dai H. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase. Exp Biol Med (Maywood). 2013; 238:1082-94.
  • [23]Xu X, Wan X, Geng J, Li F, Wang C, Dai H. Kinase inhibitors fail to induce mesenchymal-epithelial transition in fibroblasts from fibrotic lung tissue. Int J Mol Med. 2013; 32:430-8.
  • [24]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al.. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4:249-64.
  • [25]Wright GW, Simon RM. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics. 2003; 19:2448-55.
  • [26]Ruthenborg RJ, Ban JJ, Wazir A, Takeda N, Kim JW. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells. 2014; 37:637-43.
  • [27]Lekkerkerker AN, Aarbiou J, van Es T, Janssen RA. Cellular players in lung fibrosis. Curr Pharm Des. 2012; 18:4093-102.
  • [28]Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL et al.. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008; 178:729-37.
  • [29]Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P et al.. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003; 162:1495-502.
  • [30]Nho RS, Xia H, Diebold D, Kahm J, Kleidon J, White E et al.. PTEN regulates fibroblast elimination during collagen matrix contraction. J Biol Chem. 2006; 281:33291-301.
  • [31]Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al.. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998; 95:29-39.
  • [32]Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998; 280:1614-7.
  • [33]Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J et al.. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med. 2008; 205:1659-72.
  • [34]Liu Y, Soetandyo N, Lee JG, Liu L, Xu Y, Clemons WM et al.. USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation. Elife. 2014; 3:e01369.
  • [35]Scortegagna M, Subtil T, Qi J, Kim H, Zhao W, Gu W et al.. USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains. J Biol Chem. 2011; 286:27333-41.
  • [36]Araneda OF, Tuesta M. Lung oxidative damage by hypoxia. Oxid Med Cell Longev. 2012; 2012:856918.
  • [37]Mizuno S, Bogaard HJ, Voelkel NF, Umeda Y, Kadowaki M, Ameshima S et al.. Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways. Respir Res. 2009; 10:17. BioMed Central Full Text
  • [38]Papakonstantinou E, Karakiulakis G, Tamm M, Perruchoud AP, Roth M. Hypoxia modifies the effect of PDGF on glycosaminoglycan synthesis by primary human lung cells. Am J Physiol Lung Cell Mol Physiol. 2000; 279:L825-34.
  文献评价指标  
  下载次数:36次 浏览次数:8次