期刊论文详细信息
Movement Ecology
Circadian behaviour of Tectus (Trochus) niloticus in the southwest Pacific inferred from accelerometry
Anne Lorrain4  George Amos1  Pascal Dumas2  Anthony A. Robson3  Julien Thébault5  Laurent Chauvaud5  Aurélie Jolivet5 
[1] SANMA Fisheries Department of Vanuatu, Port-Vila, Vanuatu;Institut de Recherche pour le Développement (UR 227 CoReUs), 2, Fisheries Department of Vanuatu, Port-Vila, Vanuatu;Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8564, Chiba, Japan;Institut de Recherche pour le Développement (UMR 6539 CNRS/UBO/IRD/IFREMER), Nouméa cedex, 98848, Nouvelle Calédonie;Institut Universitaire Européen de la Mer (UMR CNRS 6539), Université de Bretagne Occidentale, rue Dumont d’Urville, Plouzané, F-29280, France
关键词: Migration;    Foraging;    Tectus niloticus;    24-hour periodicity;    Accelerometry;    Activity;   
Others  :  1226237
DOI  :  10.1186/s40462-015-0054-5
 received in 2015-01-02, accepted in 2015-09-06,  发布年份 2015
PDF
【 摘 要 】

Background

Behaviour and time spent active and inactive are key factors in animal ecology, with important consequences for bioenergetics. For the first time, here, we equipped the gastropod Tectus (= Trochus) niloticus with accelerometers to describe activity rhythms at two sites in the Southwest Pacific with different temperature regimes: New Caledonia and Vanuatu.

Results

Based on a 24-hour cycle, T. niloticus activity began at dusk and gradually stopped during the night, before sunrise. This nocturnal behaviour was characterised by short (duration <30 s), low intensity (acceleration < 0.12 ɡ) movements and was probably associated with foraging behaviour. We assumed that activity ceased once the animal was satiated. Our analysis of two size groups in Vanuatu (80–90 mm vs. 120–140 mm, basal shell diameter) revealed a size effect; smaller specimens displayed greater activity, reflected by more intense and longer movements while migrating at night toward the edge of the reef. This nocturnal behaviour is not uncommon for grazing gastropods and is mainly associated with attempting to avoid visual predators whilst feeding.

Conclusions

The use of accelerometers coupled with light and temperature sensors provided detailed information on topshell behaviour and physiology under natural conditions. These data provide a foundation for identifying potential changes in the fine-scale behaviour of T. niloticus in response to environmental changes, which is essential in animal ecology and stock conservation.

【 授权许可】

   
2015 Jolivet et al.

【 预 览 】
附件列表
Files Size Format View
20150924080925526.pdf 1624KB PDF download
Fig. 8. 61KB Image download
Fig. 7. 29KB Image download
Fig. 6. 71KB Image download
Fig. 5. 31KB Image download
Fig. 4. 18KB Image download
Fig. 3. 26KB Image download
Fig. 2. 31KB Image download
Fig. 1. 40KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG et al.. Biotelemetry - a mechanistic approach to ecology. Trends Ecol Evol. 2004; 19:334-43.
  • [2]Fryxell JM, Hazell M, Borger L, Dalziel BD, Haydon DT, Morales JM et al.. Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci U S A. 2008; 105:19114-9.
  • [3]Jack KM, Lenz BB, Healan E, Rudman S, Schoof VAM, Fedigan L. The effect of observer presence on the behavior of Cebus capucinus in Costa Rica. Am J Primatol. 2008; 70:490-4.
  • [4]Schneirla TC. The relationship between observation and experimentation in the field study of behaviour. Annals NY Acad Sci. 1950; 51:1022-44.
  • [5]Wikelski M, Cooke SJ. Conservation physiology. Trends Ecol Evol. 2006; 21:38-46.
  • [6]Ellwood SA, Wilson RP, Addison AC. Technology in conservation: a boon but with small print. In: Key topics in conservation biology. Macdonald D, Service K, editors. Blackwell Publishing, Oxford; 2007: p.105-19.
  • [7]Ropert-Coudert Y, Wilson RP. Trends and perspectives in animal-attached remote sensing. Front Ecol Environ. 2005; 3:437-44.
  • [8]Hart KM, Hyrenbach KD. Satellite telemetry of marine megavertebrates: the coming of age of an experimental science. Endangered Spec Res. 2009; 10:9-20.
  • [9]Kooyman GL. Genesis and evolution of bio-logging devices: 1963–2002. Memoirs Nat Inst Pol Res Special Issue. 2004; 58:15-22.
  • [10]Payne N, Gillanders B, Seymour R, Webber D, Snelling E, Semmens J. Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding. J Anim Ecol. 2011; 80:422-30.
  • [11]Robson AA, Chauvaud L, Wilson RP, Halsey LG. Small actions, big costs : the behavioural energetics of a commercially important invertebrate. J R Soc Interface. 2012:doi:. 10. 1098/rsif.2011.0713 webcite
  • [12]Shepard ELC, Wilson RP, Quintana F, Laich AG, Liebsch N, Albareda DA, et al. Identification of animal movement patterns using tri-axial accelerometry. Endangered Spec Res. 2008:doi:. 10. 3354/esr00084 webcite
  • [13]Tsuda Y, Kawabe R, Tanaka H, Mitsunaga Y, Hiraishi T, Yamamoto K et al.. Monitoring the spawning behaviour of chum salmon with an acceleration data logger. Ecol Freshwater Fish. 2006; 15:264-74.
  • [14]Wilson RP, Shepard ELC, Liebsch N. Prying into the intimate details of animal lives: use of a daily diary on animals. Endangered Spec Res. 2008; 4:123-7.
  • [15]Baras E, Togola B, Sicard B, Benech V. Behaviour of tigerfish Hydrocynus brevis in the River Niger, Mali, as revealed by simultaneous telemetry of activity and swimming depth. Hydrobiologia. 2002; 483:103-10.
  • [16]Gilly WF, Zeidberg LD, Booth JAT, Stewart JS, Marshall G, Abernathy K et al.. Locomotion and behaviour of Humboldt squid, Dosidicus gigas, in relation to natural hypoxia in the gulf of California, Mexico. J Experiment Biol. 2012; 215:3175-90.
  • [17]Whitney NM, Papastamatiou YP, Holland KN, Lowe CG. Use of an acceleration data logger to measure diel activity patterns in captive whitetip reef sharks, Triaenodon obseus. Aquat Living Resour. 2007; 29:299-305.
  • [18]Brown DD, Kays R, Wikelski M, Wilson R, Kimley AP. Observing the unwatchable through acceleration logging of animal behavior. Animal Biotelemetry. 2013; 1:1-16. BioMed Central Full Text
  • [19]Robson AA, Mansfield RP. Overinflated behavioural energetics: using dynamic body acceleration to accurately measure behaviour duration and estimate energy expenditure. Aquat Biol. 2014; 21:121-6.
  • [20]Heslinga GA. Growth and maturity of Trochus niloticus in the laboratory. Proc Fourth Int Coral Reef Symp. 1981; 1:39-45.
  • [21]Heslinga GA, Hillmann A. Hatchery culture of the commercial top snail Trochus niloticus in Palau, Caroline islands. Aquaculture. 1981; 22:3-43.
  • [22]Long BG, Poiner IR, Harris ANM. Method of estimating the standing stock of Trochus niloticus incorporating Landsat satellite date, with application to the trochus resources of the Bourke Isles, Torres Strait, Australia. Mar Biol. 1993; 115:587-93.
  • [23]Wells SM. International trade in ornamental shells. Cambridge, U.K, IUCN Conservation Monitoring Center; 1981.
  • [24]Amos MJ. Management policy for the trochus fishery in the Pacific. In: Trochus: Status, Hatchery Practice and Nutrition; 6–7 June 1996; Northern Territory University. Lee CL, Lynch PW, editors. ACIAR Proceedings, Canberra; 1997: p.164-9.
  • [25]Castell LL, Sweatman HPA. Predator–prey interactions among some intertidal gastropods on the Great Barrier Reef. J Zool. 1997; 241:145-59.
  • [26]Crowe TP, Amos MJ, Lee CL. the potential of reseeding with juveniles as a tool for the management of trochus fisheries. In: Trochus: Status, Hatchery Practice and Nutrition; Northern Territory University. Lee CL, Lynch PW, editors. ACIAR Proceedings, Canberra; 1997: p.170-7.
  • [27]Heslinga GA, Orak O, Ngiramengior M. Coral Reef Sanctuaries for Trochus Shells. Mar Fish Rev. 1984; 46:73-80.
  • [28]Nash WJ. Trochus. Nearshore Marine Resources of the South Pacific: Information for Fisheries Development and Management. 1993.451-9.
  • [29]Pakoa K, Friedman K, Damlamian H. the status of trochus (Trochus niloticus) in Tongatapu Lagoon, Kingdom of Tonga. Secr Pac Community. 2010; 15:3-15.
  • [30]Purcell SW, Cheng YW. Experimental restocking and seasonal visibility of a coral reef gastropod assessed by temporal modelling. Aquat Biol. 2010; 9:227-38.
  • [31]Bour W. The fishery resources of Pacific Island countries. Part 3 Trochus. FAO Fisheries Technical paper. 1990.3.
  • [32]Castell LL. Population studies of juvenile Trochus niloticus on a reef flat on the north-eastern Queensland coast, Australia. Mar Freshw Res. 1997; 48:211-7.
  • [33]Smith BD. Growth rate, distribution and abundance of the introduced topshell Trochus niloticus Linnaeus on Guam, Mariana Islands. Bull Mar Sci. 1987; 41:466-74.
  • [34]McGowan JA. the Trochus fishery of the Trust Territory of the Pacific Islands. In: Report to the Hight Commissioner. U.S. Trust Territory of the Pacifi Islands, Saipan; 1958: p.46.
  • [35]Dumas P, Jimenez H, Peignon C, Wantiez L, Adjeroud M. Small-scale habitat structure modulates the effects of no-take marine reserves for coral reef macroinvertebrates. PLoS One. 2013; 8: Article ID e58998
  • [36]Bour W. Biologie, ecologie, exploitation et gestion rationnelle des trocas (Trocus niloticus L.) de Nouvelle Calédonie. Université des sciences et techniques du Languedoc; 1989.
  • [37]Villanueva RD, Baria MVB, dela Cruz DW. Effects of grazing by herbivorious gastropod (Trochus niloticus) on the survivorship of cultured coral spat. Zool Stud. 2013; 52:1-7. BioMed Central Full Text
  • [38]Bour W, Gohin F, Bouchet P. Croissance et mortalité naturelle des trocas (Trochus niloticus L.) de Nouvelle Calédonie (Mollusca, Gastropoda). Haliotis. 1982; 12:71-90.
  • [39]Nash WJ. Aspects of the biology of trochus niloticus and its fishery in the Great Barrier Reef region. Cairns, Queensland, Australia, Northern Fisheries Research Centre; 1985.
  • [40]Lorrain A, Clavier J, Thébault J, Tremblay-Boyer L, Houlbrèque F, Amice E et al.. Variability in diel and seasonal in situ metabolism of the tropical gastropod Tectus niloticus. Aquat Biol. 2015; 23:167-82.
  • [41]Shepard ELC, Wilson RP, Halsey LG, Quintana F, Laich AG, Gleiss AC et al.. Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol. 2008; 4:235-41.
  • [42]Gleiss AC, Wilson RP, Shepard ELC. Making overall dynamic body acceleration work: on th theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol. 2011; 2:23-33.
  • [43]Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR et al.. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol. 2006; 75:1081-90.
  • [44]Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard EL et al.. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS One. 2012; 7: Article ID e31187
  • [45]Halsey LG, Shepard ELC, Wilson RP. Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp Biochem Phys A. 2011; 158:305-14.
  • [46]Ruff T. The Lomb-Scargle periodogram in biological rhythm research: analysis of incomplete and unequally-spaced time-series. Biol Rhythm Res. 1999; 30:178-201.
  • [47]Van Dongen HPA, Olofsen E, Van Hartevelt JH, Kruyt EW. A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method. Biol Rhythm Res. 1999; 30:149-77.
  • [48]Gannon R, Taylor MD, Suthers IM, Gray CA, van der Meulen DE, Smith JA et al.. Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry. J Exp Biol. 2014; 217:3033-7.
  • [49]Evans J, Borg JA, Schembri PJ. Distribution, habitat preferences and behaviour of the critically endangered Maltese top-shell Gibbula nivosa (Gastropoda: Trochidae). Mar Biol. 2011; 158:603-11.
  • [50]Yamaguchi M. A synopsis of the biology of green snail (Turbo marmoratus). In: Workshop on Trochus resource assessmen, management and develpment. South Pacific Commission, Noumea, New Caledonia; 1997: p.127-33.
  • [51]Klumpp DW, Pulfrish A. Trophic significance of herbivorous macroinvertebrates on the central Great Barrier Reef. Coral Reefs. 1989; 8:135-44.
  • [52]Tahil AS, Juinio-Menez MA. Natural diet, feeding periodicity and functional response to food density of the abalone, Haliotis asinia L., (Gastropoda). Aquac Res. 1999; 30:95-107.
  • [53]Torréton J-P, Rochelle-Newall E, Pringault O, Jacquet S, Faure V, Briand E. Variability of primary and bacterial production in a coral reef lagoon (New Caledonia). Mar Pollut Bull. 2010; 61:335-48.
  • [54]Little C. Factors governing patterns of foraging activity in littoral marine herbivorous molluscs. J Mollus Stud. 1989; 55:273-84.
  • [55]Clavier J, Boucher G, Garrigue C. Benthic respiratory and photosynthetic quotients in a tropical lagoon. Comptes rendus de l’Académie des Sciences-Series III- Sciences de la Vie. 1994; 317:937-42.
  • [56]Clavier J, Garrigue C, Boucher G, Bonnet S, Di Matteio A, Hamel P et al.. Flux d’oxygène et de sels nutritifs à l’interface eau-sédiment dans le lagon sud-ouest de Nouvelle-Calédonie: enrichissements en ammonium et action d’un inhibiteur de la photosynthèse. Méthode et recueil des données. In: Rapport scientifique et technique, Sciences de la Mer, Biologie Marine. ORSTOM, Nouméa; 1991: p.1-56.
  • [57]Rougerie F. Le lagon sud-ouest de Nouvelle Calédonie: spécificité hydrologique, dynamique et productivité. PhD thesis. ORSTOM; 1986.
  • [58]Carefoot TH. Energy transformation by sea hares (aplysia) in areas of coral rubble. Proc 5th Int Coral Reef Symp. 1985; 4:9-16.
  • [59]Frank PW. Growth rates and longevity of some gastropod mollusks on the coral reef at Heron Island. Oceologia. 1969; 2:232-50.
  • [60]Sammarco PW, Tirendi F, Nott A. Direct determination of organic carbon in modern reef sediments and calcareous organisms after dissolution of carbonate. Mar Geol. 1986; 70:321-9.
  • [61]Cloudsley-Thompson JL. Rhythmic activity in animal Physiology and Behavior. Academic, New York; 1961.
  • [62]Carassou L, Léopold M, Guillemot N, Wantiez L, Kulbicki M. Does herbivorous fish protection really improve coral reef resilience? A case study from New Caledonia (South Pacific). PLoS One. 2013; 8: Article ID e60564
  • [63]Letourneur Y, Kulbicki M, Labrosse P. Spatial structure of commercial reef fish communities along a terrestrial runoff gradient in the northern lagoon of New Caledonia. Environ Biol Fish. 1998; 51:141-59.
  • [64]Steneck RS et al.. Herbivory on coral reefs: a synthesis. In: Proc 6th International Coral Reef Symposium; Townsville, Australia. 1988.37-49.
  • [65]Huey RB, Kingsolver JG. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol. 1989; 4:131-5.
  • [66]Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC et al.. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A. 2008; 105:6668-72.
  • [67]Kingsolver JG. The well-temperatured biologist. Am Nat. 2009; 174:755-68.
  • [68]Halsey LG, Matthews PGD, Rezende EL, Chauvaud L, Robson AA. The intercations between temperature and activity levels in driving metabolism rate: theory, with empirical validation from contrasting ectotherms. Oecologia. 2015, In press.
  • [69]Yi S, Lee CL. Effects of temperature and salinity on the oxygen consumption and survival of hatchery-reared juvenile topshell Trochus niloticus (Mollusca: Gastropoda). In: Trochus: Status, Hatchery Practice and Nutrition. Lee CL, Lynch PW, editors. Australian Centre for International Agricultural Research, Canberra, Australia; 1997: p.69-75.
  • [70]Brown JH, Allen AP, Gillouly JF. The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems. In: Body size: the structure and function of aquatic ecosystems. Hildrew AG, Raffaelli DG, Edmonds-Brown R, editors. Cambridge University Press, New York; 2007: p.1-15.
  • [71]Mardsen ID, Shumway SE, Padilla DK. Does size matter? The effects of body size and declining oxygen tension on oxygen uptake in gastropods. J Mar Biol Assoc UK. 2012; 92:1603-17.
  • [72]Peters RH. The ecologycal implications of body size. Cambridge University Press, New York; 1983.
  • [73]Byers JE. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. J Exp Mar Biol Ecol. 2000; 248:133-50.
  • [74]Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y et al.. A new technique for monitoring the behaviour of free-ranging Adelie penguins. J Experiment Biol. 2001; 204:685-90.
  • [75]Springer B. Das problem der bestimmung von Bewegungsaktivitaeten bei warmbluetigen Tieren. University of Kiel; 1992.
  • [76]Bolger DT, Newmark WD, Morrison TA, Doak DF. The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett. 2008; 11:63-77.
  • [77]Tanaka H, Takagi Y, Naito Y. Swimming speeds and buoyancy compensation of migration adult chum salmon Oncorhynchus keta revealed by speed/depth/acceleration data logger. J Experiment Biol. 2001; 204:3895-904.
  • [78]Clarke PJ, Komatsu T, Bell JD, Lasi F, Oengpepa CP, Leqata J. Combined culture of Trochus niloticus and giant clams (Tridacnidae): benefits for restocking and farming. Aquaculture. 2003; 215:123-44.
  • [79]Crowe TP, Lee CL, McGuinness KA, Amos MJ, Dangeugun J, Dwiono SAP et al.. Experimental evaluation of the use of hatchery-reared juveniles to enhance stocks of the topshells Trochus niloticus in Australia, Indonesia and Vanuatu. Aquaculture. 2002; 206:175-97.
  • [80]Sutherland WJ. The importance of behavioural studies in conservation biology. Anim Behav. 1998; 56:801-9.
  • [81]Caro T. Behavior and conservation: a bridge too far? Trends Ecol Evol. 2007; 22:394-400.
  文献评价指标  
  下载次数:112次 浏览次数:15次