Molecular Cytogenetics | |
Deletion 9p23 to 9p11.1 as sole additional abnormality in a Philadelphia positive chronic myeloid leukemia in blast crisis: a rare event | |
Walid Al-Achkar1  Thomas Liehr3  Adnan Ikhtiar2  Manar Asa’ad1  Abdulsamad Wafa1  | |
[1] Department of Molecular Biology and Biotechnology, Human Genetics Division, Atomic Energy Commission, Damascus, Syria;Department of Molecular Biology and Biotechnology, Mammalians Biology Division, Atomic Energy Commission, Damascus, Syria;Institute of Human Genetics, Jena University Hospital, Jena, Germany | |
关键词: Prognostic factors; CDKN2A gene; del(9)(p24p12); Philadelphia chromosome; Chronic myeloid leukemia; | |
Others : 1222625 DOI : 10.1186/s13039-015-0165-0 |
|
received in 2015-04-15, accepted in 2015-07-18, 发布年份 2015 |
【 摘 要 】
Background
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the presence of a derivative chromosome 22 [der(22)] commonly called Philadelphia chromosome (Ph). The Ph chromosome is a product of the reciprocal translocation t(9;22)(q34.1;q11.2). Additional genetic changes occur in less than 10 % of CML cases at the time of diagnosis and other genetic changes are seen in 60–80 % of the cases in advanced disease. Even though deletions in chromosome 9 are not rare findings in advanced phase-CML, del(9)(p23p11.1) as sole additional abnormality detected by fluorescence in situ hybridization (FISH) technique, to our knowledge has not been described in the literature.
Results
A complete cytogenetic and molecular cytogenetic analysis, molecular biology method (reverse transcription polymerase chain reaction (RT-PCR)), and immunophenotype confirmed to be a CML case in blast crisis (BC). It revealed del(9)(p23p11.1) as sole abnormality detected by FISH technique besides Ph chromosome, which leads to monoallely of tumor suppressor gene CDKN2A (cyclin-dependent kinase inhibitor 2A) before Imatinib mesylate (IM) treatment.
Conclusions
The patient did not demonstrate a good response to IM treatment. The underlying mechanisms and prognostic implications of these cytogenetic abnormalities are discussed.
【 授权许可】
2015 Wafa et al.
Files | Size | Format | View |
---|---|---|---|
Fig. 2. | 57KB | Image | download |
Fig. 1. | 34KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
【 参考文献 】
- [1]Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002; 107:76-94.
- [2]Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. WHO Classification of tumors of haematopoietic andlymphoid tissues. 4th ed. WHO press: IARC; 2008. p. 439.
- [3]Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F, Hjorth-Hansen H, Hughes TP, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Martinelli G, Mayer J, Müller MC, Niederwieser D, Pane F, Radich JP, Rousselot P, Saglio G, Saußele S, Schiffer C, Silver R, Simonsson B, Steegmann JL, Goldman JM, Hehlmann R. European LeukemiaNet recommendationsfor the management of chronic myeloid leukemia: 2013. Blood. 2013; 122:871-884.
- [4]Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA, Investigators IRIS. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006; 355:2408-2417.
- [5]Mitelman Database of Chromosome Aberrations in Cancer (2015). Mitelman F, Johansson B and Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman" [last accessed 04.02.2015].
- [6]Pollak C, Hagemeijer A. Abnormalities of the short arm of chromosome 9 with partial loss of material in hematological disorders. Leukemia. 1987; 1:541-548.
- [7]Van PN, Xinh PT, Kano Y, Tokunaga K, Sato Y. Establishment and characterization of A novel Philadelphia-chromosome positive chronic myeloid leukemia cell line, TCC-S, expressing P210 and P190 BCR/ABL transcripts but missing normal ABL gene. Hum Cell. 2005; 18:25-33.
- [8]Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S, Zhou X, Luthra R, Garcia-Manero G, Giles F, Rios MB, Verstovsek S, Cortes J. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006; 20:1767-1773.
- [9]Mitchell B, Deininger M. Techniques for risk stratification of newly diagnosed patients with chronic myeloid leukemia. Leuk Lymphoma. 2011; 52:4-11.
- [10]O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003; 348:994-1004.
- [11]Gribble SM, Sinclair PB, Grace C, Green AR, Nacheva EP. Comparative analysis of G-banding, chromosome painting, locusspecific fluorescence in situ hybridization, and comparative genomic hybridization in chronic myeloid leukemia blast crisis. Cancer Genet Cytogenet. 1999; 111:7-17.
- [12]Cortes JE, Talpaz M, Giles F, O’Brien S, Rios MB, Shan J, Garcia-Manero G, Faderl S, Thomas DA, Wierda W, Ferrajoli A, Jeha S, Kantarjian HM. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003; 101:3794-3800.
- [13]O’Dwyer ME, Mauro MJ, Blasdel C, Farnsworth M, Kurilik G, Hsieh YC, Mori M, Druker BJ. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood. 2004; 103:451-455.
- [14]Sokal JE, Baccarani M, Russo D, Tura S. Staging and prognosis in chronic myelogenous leukemia. Semin Hematol. 1988; 25:49-61.
- [15]Griesshammer M, Heinze B, Hellmann A, Popp C, Anger B, Heil G, Bangerter M, Heimpel H. Chronic myelogenous leukemia in blast crisis: retrospective analysis of prognostic factors in 90 patients. Ann Hematol. 1996; 73:225-230.
- [16]Kantarjian HM, Deisseroth A, Kurzrock R, Estrov Z, Talpaz M. Chronic myelogenous leukemia: a concise update. Blood. 1993; 82:691-703.
- [17]Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007; 7:441-453.
- [18]Salloukh HF, Laneuville P. Increase in mutant frequencies in mice expressing the BCR-ABL activated tyrosine kinase. Leukemia. 2000; 14:1401-1404.
- [19]Calabretta B, Perrotti D. The biology of CML blast crisis. Blood. 2004; 103:4010-4022.
- [20]Asimakopoulos FA, Shteper PJ, Krichevsky S, Fibach E, Polliack A, Rachmilewitz E, Ben-Neriah Y, Ben-Yehuda D. ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood. 1999; 94:2452-2460.
- [21]Jones D, Luthra R, Cortes J, Thomas D, O’Brien S, Bueso-Ramos C, Hai S, Ravandi F, de Lima M, Kantarjian H, Jorgensen JL. BCR-ABL fusion transcript types and levels and their interaction with secondary genetic changes in determining the phenotype of Philadelphia chromosome-positive leukemias. Blood. 2008; 112:5190-5192.
- [22]Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007; 130:223-233.
- [23]Zhang Y, Tong T. FOXA1 antagonizes EZH2-mediated CDKN2A repression in carcinogenesis. Biochem Biophys Res Commun. 2014; 453:172-178.
- [24]Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, Case MC, Minto L, Barber KE, Parker H, Wright SL, Stewart AR, Bailey S, Bown NP, Hall AG, Harrison CJ. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood. 2009; 113:100-107.
- [25]Heyman M, Rasool O, Borgonovo Brandter L, Liu Y, Grandér D, Söderhäll S, Gustavsson G, Einhorn S. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J Clin Oncol. 1996; 14:1512-1520.
- [26]Kees UR, Burton PR, Lu C, Baker DL. Homozygous deletion of the p16/MTS1 gene in pediatric acute lymphoblastic leukemia is associated with unfavorable clinical outcome. Blood. 1997; 89:4161-4166.
- [27]Heerema NA, Sather HN, Sensel MG, Liu-Mares W, Lange BJ, Bostrom BC, Nachman JB, Steinherz PG, Hutchinson R, Gaynon PS, Arthur DC, Uckun FM. Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 1999; 94:1537-1544.
- [28]Li Q, Zhang Y, Fu J, Han L, Xue L, Lv C, Wang P, Li G, Tong T. FOXA1 mediates p16(INK4a) activation during cellular senescence. EMBO J. 2013; 32:858-873.
- [29]Jozwik KM, Carroll JS. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 2012; 12:381-385.
- [30]Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics andgenomics of human FOX family genes. Cancer Lett. 2013; 328:198-206.
- [31]AL-achkar W, Nweder MS WA. A complex translocation t(5;9;22) in Philadelphia cells involving the short arm of chromosome 5 in a case of chronic myelogenous leukemia. J Exp Clin Cancer Res. 2007; 26:411-415.
- [32]Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U. Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med. 2002; 9:335-339.