Virology Journal | |
Effects of human papillomavirus (HPV) type 16 oncoproteins on the expression of involucrin in human keratinocytes | |
György Veress1  Lajos Gergely1  József Kónya1  Annamária Ferenczi1  Anita Szalmás1  Eszter Gyöngyösi1  | |
[1] Department of Medical Microbiology, Medical and Health Science Centre, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary | |
关键词: Involucrin; Keratinocyte differentiation; Oncogenes; HPV 16; | |
Others : 1155113 DOI : 10.1186/1743-422X-9-36 |
|
received in 2011-10-06, accepted in 2012-02-14, 发布年份 2012 | |
【 摘 要 】
Background
The human papillomavirus (HPV) life cycle is closely linked to keratinocyte differentiation. Oncogenic HPV infection has been shown to hamper the normal differentiation of keratinocytes; however, the underlying mechanisms responsible for this phenomenon are yet to be clarified. Here, we aimed to study the effects of HPV16 E6 and E7 oncogenes on the expression of involucrin (IVL), an established marker of keratinocyte differentiation, in human foreskin keratinocyte (HFK) cells.
Results
The differentiation of HFK cells by serum and high calcium significantly increased both the mRNA and the protein levels of IVL. The E6 and E7 oncoproteins of HPV16 together caused strong down-regulation of IVL mRNA and protein both in proliferating and in differentiating HFK cells. To study the effects of HPV oncogenes on the IVL promoter, we made transient transfection assays and luciferase tests and found that HPV 16 E6 but not E7 repressed IVL promoter activity in proliferating HFK cells. The inhibitory effect of HPV 16 E6 on the human IVL promoter could be localised to the proximal regulatory region (PRR) of the gene.
Conclusions
These results suggest that the down-regulation of IVL promoter activity by HPV 16 E6 significantly contribute to the inhibition of endogenous IVL expression by the HPV 16 oncoproteins. In contrast, the down-regulation of endogenous IVL expression by HPV16 E7 is probably not caused by a direct and specific effect of E7 on the IVL promoter.
【 授权许可】
2012 Gyöngyösi et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150407112259545.pdf | 3606KB | download | |
Figure 5. | 45KB | Image | download |
Figure 4. | 70KB | Image | download |
Figure 3. | 51KB | Image | download |
Figure 2. | 80KB | Image | download |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]zur Hausen H: Papillomavirus infections--a major cause of human cancers. Biochim Biophys Acta 1996, 1288:F55-F78.
- [2]de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H: Classification of papillomaviruses. Virology 2004, 324:17-27.
- [3]Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV: The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002, 55:244-265.
- [4]Munger K, Howley PM: Human papillomavirus immortalization and transformation functions. Virus Res 2002, 89:213-228.
- [5]Mantovani F, Banks L: The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001, 20:7874-7887.
- [6]Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL: Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001, 20:7888-7898.
- [7]Longworth MS, Laimins LA: Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004, 68:362-372.
- [8]Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT: Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev 1995, 9:2335-2349.
- [9]Jones DL, Alani RM, Munger K: The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 1997, 11:2101-2111.
- [10]Pei XF, Sherman L, Sun YH, Schlegel R: HPV-16 E7 protein bypasses keratinocyte growth inhibition by serum and calcium. Carcinogenesis 1998, 19:1481-1486.
- [11]Sherman L, Schlegel R: Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol 1996, 70:3269-3279.
- [12]Zehbe I, Richard C, DeCarlo CA, Shai A, Lambert PF, Lichtig H, Tommasino M, Sherman L: Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. Virology 2009, 383:69-77.
- [13]Duffy CL, Phillips SL, Klingelhutz AJ: Microarray analysis identifies differentiation-associated genes regulated by human papillomavirus type 16 E6. Virology 2003, 314:196-205.
- [14]Lehr E, Brown DR: Infection with the oncogenic human papillomavirus type 59 alters protein components of the cornified cell envelope. Virology 2003, 309:53-60.
- [15]Lehr E, Hohl D, Huber M, Brown D: Infection with Human Papillomavirus alters expression of the small proline rich proteins 2 and 3. J Med Virol 2004, 72:478-483.
- [16]Eckert RL, Yaffe MB, Crish JF, Murthy S, Rorke EA, Welter JF: Involucrin-structure and role in envelope assembly. J Invest Dermatol 1993, 100:613-617.
- [17]Rose BR, Thompson CH, Tattersall MH, Elliott PM, Dalrymple C, Cossart YE: Identification of E6/E7 transcription patterns in HPV 16-positive cervical cancers using the reverse transcription/polymerase chain reaction. Gynecol Oncol 1995, 56:239-244.
- [18]Howie HL, Katzenellenbogen RA, Galloway DA: Papillomavirus E6 proteins. Virology 2009, 384:324-334.
- [19]Liu X, Roberts J, Dakic A, Zhang Y, Schlegel R: HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function. Virology 2008, 375:611-623.
- [20]Santin AD, Zhan F, Bignotti E, Siegel ER, Cane S, Bellone S, Palmieri M, Anfossi S, Thomas M, Burnett A, et al.: Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 2005, 331:269-291.
- [21]Wong YF, Cheung TH, Tsao GS, Lo KW, Yim SF, Wang VW, Heung MM, Chan SC, Chan LK, Ho TW, et al.: Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 2006, 118:2461-2469.
- [22]Kravchenko-Balasha N, Mizrachy-Schwartz S, Klein S, Levitzki A: Shift from apoptotic to necrotic cell death during human papillomavirus-induced transformation of keratinocytes. J Biol Chem 2009, 284:11717-11727.
- [23]Wan F, Miao X, Quraishi I, Kennedy V, Creek KE, Pirisi L: Gene expression changes during HPV-mediated carcinogenesis: a comparison between an in vitro cell model and cervical cancer. Int J Cancer 2008, 123:32-40.
- [24]Zhang B, Chen W, Roman A: The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci USA 2006, 103:437-442.
- [25]Rossi A, Jang SI, Ceci R, Steinert PM, Markova NG: Effect of AP1 transcription factors on the regulation of transcription in normal human epidermal keratinocytes. J Invest Dermatol 1998, 110:34-40.
- [26]Eckert RL, Crish JF, Efimova T, Dashti SR, Deucher A, Bone F, Adhikary G, Huang G, Gopalakrishnan R, Balasubramanian S: Regulation of involucrin gene expression. J Invest Dermatol 2004, 123:13-22.
- [27]Yugawa T, Handa K, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T: Regulation of Notch1 gene expression by p53 in epithelial cells. Mol Cell Biol 2007, 27:3732-3742.
- [28]Welter JF, Crish JF, Agarwal C, Eckert RL: Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem 1995, 270:12614-12622.
- [29]Eckert RL, Crish JF, Banks EB, Welter JF: The epidermis: genes on-genes off. J Invest Dermatol 1997, 109:501-509.
- [30]Mehic D, Bakiri L, Ghannadan M, Wagner EF, Tschachler E: Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol 2005, 124:212-220.
- [31]Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Munger K, Wells SI: The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol 2005, 79:14309-14317.
- [32]Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA, Cripe TP, Grosveld GC, Wells SI: Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 2009, 69:1792-1799.
- [33]McCloskey R, Menges C, Friedman A, Patel D, McCance DJ: Human papillomavirus type 16 E6/E7 upregulation of nucleophosmin is important for proliferation and inhibition of differentiation. J Virol 2010, 84:5131-5139.
- [34]Antinore MJ, Birrer MJ, Patel D, Nader L, McCance DJ: The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J 1996, 15:1950-1960.
- [35]Ng DC, Shafaee S, Lee D, Bikle DD: Requirement of an AP-1 site in the calcium response region of the involucrin promoter. J Biol Chem 2000, 275:24080-24088.
- [36]Armstrong DJ, Roman A: The relative ability of human papillomavirus type 6 and human papillomavirus type 16 E7 proteins to transactivate E2F-responsive elements is promoter- and cell-dependent. Virology 1997, 239:238-246.
- [37]Murvai M, Borbély AA, Kónya J, Gergely L, Veress G: Effect of human papillomavirus type 16 E6 and E7 oncogenes on the activity of the transforming growth factor-beta2 (TGF-beta2) promoter. Arch Virol 2004, 149:2379-2392.
- [38]Borbély AA, Murvai M, Kónya J, Beck Z, Gergely L, Li F, Veress G: Effects of human papillomavirus type 16 oncoproteins on survivin gene expression. J Gen Virol 2006, 87:287-294.