期刊论文详细信息
Orphanet Journal of Rare Diseases
The prevalence and epidemiology of genetic renal disease amongst adults with chronic kidney disease in Australia
Wendy Hoy2  Helen Healy2  Zaimin Wang2  Anne Salisbury2  Chirag Patel1  Andrew Mallett2 
[1] Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia;CKD.QLD and Centre for Chronic Disease, School of Medicine, University of Queensland, Brisbane, Australia
关键词: Epidemiology;    Nephrogenetics;    Nephrology;    Chronic kidney disease;    Genetic renal disease;   
Others  :  861440
DOI  :  10.1186/1750-1172-9-98
 received in 2014-04-29, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

There are an established and growing number of Mendelian genetic causes for chronic kidney disease (CKD) in adults, though estimates of prevalence have been speculative. The CKD Queensland (CKD.QLD) registry enables partial clarification of this through the study of adults with CKD receiving nephrology care throughout Queensland, Australia.

Methods

Data from the first 2,935 patients consented to the CKD.QLD registry across five sites was analysed, with a comparison between those with and without Genetic Renal Disease (GRD). Prevalence of GRD amongst those with diagnosed CKD, the general population, and commencing renal replacement therapy (RRT) was calculated using the CKD.QLD registry, national census data and extracted Australian and New Zealand Dialysis and Transplantation (ANZDATA) registry report data respectively.

Results

Patients with GRD constituted 9.8% of this Australian adult CKD cohort (287/2935). This was lower than in local incident RRT cohorts (2006–2011: 9.8% vs 11.3%, x2 = 0.014). Cases of adult CKD GRD were more likely to be female (54.0% vs 45.6%; x2 = 0.007), younger (mean 52.6 yrs vs 69.3 yrs, p < 0.001), have a higher eGFR (mean 49.7 ml/min/1.73 m2 vs 40.4 ml/min/1.73 m2, p < 0.001), and have earlier stage renal disease (CKD Stage 1: 15.7% vs 5.1%, x2 < 0.0005) than those without GRD.

Conclusions

The proportion of GRD amongst an Australian adult CKD population in specialty renal practice is similar to past estimations. GRD is a significant cause for CKD and for RRT commencement, presenting opportunities for ongoing longitudinal study, directed therapeutics and clinical service redesign.

【 授权许可】

   
2014 Mallett et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725001405485.pdf 998KB PDF download
105KB Image download
75KB Image download
【 图 表 】

【 参考文献 】
  • [1]Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ, Atkins RC: Prevalence of kidney damage in Australian adults: the AusDiab kidney study. J Am Soc Nephrol 2003, 14(7 Suppl 2):S131-S138.
  • [2]Hildebrandt F: Genetic kidney diseases. Lancet 2010, 375(9722):1287-1295.
  • [3]Joosten H, Strunk AL, Meijer S, Boers JE, Aries MJ, Abbes AP, Engel H, Beukhof JR: An aid to the diagnosis of genetic disorders underlying adult-onset renal failure: a literature review. Clin Nephrol 2010, 73(6):454-472.
  • [4]Nordfors L, Luttropp K, Carrero JJ, Witasp A, Stenvinkel P, Lindholm B, Schalling M: Genetic studies in chronic kidney disease: basic concepts. J Nephrol 2012, 25(2):141-149.
  • [5]AIHW: End-stage Kidney Disease in Australia: total incidence 2003–2007. Canberra: Australian Institute of Health and Welfare; 2011.
  • [6]Cass A, Chadban S, Gallagher M, Howard K, Jones A, McDonald S, Snelling P, White S: The Economic Impact of End Stage Kidney Disease in Australia - Projections to 2020. Melbourne: Kidney Health Australia; 2010.
  • [7]Fast Facts on CKD in Australia. [http://www.kidney.org.au/Kidneydisease/FastFactsonCKD/tabid/589/Default.aspx webcite]
  • [8]ANZDATA: The 35th Annual Report: ANZDATA Registry Report 2012. Adelaide: Australia and New Zealand Dialysis and Transplant Registry; 2012.
  • [9]Fletcher J, McDonald S, Alexander SI, Australian, New Zealand Pediatric Nephrology A: Prevalence of genetic renal disease in children. Pediatr Nephrol 2013, 28(2):251-256.
  • [10]Consortium IPKD: Polycystic kidney disease: the complete structure of the PKD1 gene and its protein: the International Polycystic Kidney Disease Consortium. Cell 1995, 81(2):289-298.
  • [11]Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC: The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 1995, 10(2):151-160.
  • [12]Peters DJ, Spruit L, Saris JJ, Ravine D, Sandkuijl LA, Fossdal R, Boersma J, van Eijk R, Norby S, Constantinou-Deltas CD, Pierides A, Brissenden JE, Frants RR, van Ommen GJB, Breuning MH: Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet 1993, 5(4):359-362.
  • [13]Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, Pearson PL, Weatherall DJ: A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature 1985, 317(6037):542-544.
  • [14]Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, Gregory MC, Skolnick MH, Atkin CL, Tryggvason K: Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 1990, 248(4960):1224-1227.
  • [15]Flinter FA, Cameron JS, Chantler C, Houston I, Bobrow M: Genetics of classic Alport's syndrome. Lancet 1988, 2(8618):1005-1007.
  • [16]Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, Verellen-Dumoulin C, Chan B, Schroder CH, Smeets HJ, Reeders ST: Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet 1994, 8(1):77-81.
  • [17]Wang Y, Sivakumar V, Mohammad M, Colville D, Storey H, Flinter F, Dagher H, Savige J: Clinical and genetic features in autosomal recessive and X-linked Alport syndrome. Pediatr Nephrol 2013, 29(3):391-396.
  • [18]Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA: COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 2013, 24(12):1945-1954.
  • [19]Hildebrandt F, Benzing T, Katsanis N: Ciliopathies. N Engl J Med 2011, 364(16):1533-1543.
  • [20]Zaucke F, Boehnlein JM, Steffens S, Polishchuk RS, Rampoldi L, Fischer A, Pasch A, Boehm CW, Baasner A, Attanasio M, Hoppe B, Hopfer H, Beck BB, Sayer JA, Hildebrandt F, Wolf MT: Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum Mol Genet 2010, 19(10):1985-1997.
  • [21]Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, Choi M, Bodria M, Liu Y, Weng PL, Lozanovski VJ, Verbitsky M, Lugani F, Sterken R, Paragas N, Caridi G, Carrea A, Dagnino M, Materna-Kiryluk A, Santamaria G, Murtas C, Ristoska-Bojkovska N, Izzi C, Kacak N, Bianco B, Giberti S, Gigante M, Piaggio G, Gesualdo L, Kosuljandic Vukic D, et al.: Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med 2013, 369(7):621-629.
  • [22]Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S: Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 2012, 131(11):1725-1738.
  • [23]Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, Reutter HM, Soliman NA, Bogdanovic R, Kehinde EO, Tasic V, Hildebrandt F: Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 2014, 85(6):1429-1433.
  • [24]Saisawat P, Tasic V, Vega-Warner V, Kehinde EO, Gunther B, Airik R, Innis JW, Hoskins BE, Hoefele J, Otto EA, Hildebrandt F: Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int 2012, 81(2):196-200.
  • [25]Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F: Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 2014, 29(4):695-704.
  • [26]Yosypiv IV: Congenital anomalies of the kidney and urinary tract: a genetic disorder? Int J Nephrol 2012, 2012:909083.
  • [27]Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wuthrich RP: Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 2010, 363(9):820-829.
  • [28]Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU: Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2010, 363(9):830-840.
  • [29]Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS: Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012, 367(25):2407-2418.
  • [30]Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M, Song XW, Xu H, Mari S, Qian F, Pei Y, Musco G, Boletta A: Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 2013, 19(4):488-493.
  • [31]Gross O, Friede T, Hilgers R, Gorlitz A, Gavenis K, Ahmed R, Durr U: Safety and efficacy of the ACE-Inhibitor Ramipril in Alport syndrome: the double-blind, randomized, placebo-controlled: multicenter phase III early PRO-TECT Alport trial in pediatric patients. ISRN pediatrics 2012, 2012:436046.
  • [32]Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tonshoff B, Hocker B, Wygoda S, Ehrich JH, Pape L, Konrad M, Rascher W, Dotsch J, Muller-Wiefel DE, Hoyer P, Knebelmann B, Pirson Y, Grunfeld JP, Niaudet P, Cochat P, Heidet L, Lebbah S, Torra R, Friede T, Lange K, Muller GA, Weber M: Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 2012, 81(5):494-501.
  • [33]Kashtan CE, Ding J, Gregory M, Gross O, Heidet L, Knebelmann B, Rheault M, Licht C: Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 2012, 28(1):5-11.
  • [34]Noone D, Licht C: An update on the pathomechanisms and future therapies of Alport syndrome. Pediatr Nephrol 2012, 28(7):1025-1036.
  • [35]Temme J, Peters F, Lange K, Pirson Y, Heidet L, Torra R, Grunfeld JP, Weber M, Licht C, Muller GA, Gross O: Incidence of renal failure and nephroprotection by RAAS inhibition in heterozygous carriers of X-chromosomal and autosomal recessive Alport mutations. Kidney Int 2012, 81(8):779-783.
  • [36]Kashtan CE, Ding J, Gregory M, Gross O, Heidet L, Knebelmann B, Rheault M, Licht C: Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 2013, 28(1):5-11.
  • [37]Kruegel J, Rubel D, Gross O: Alport syndrome–insights from basic and clinical research. Nat Rev Nephrol 2013, 9(3):170-178.
  • [38]Savige J, Gregory M, Gross O, Kashtan C, Ding J, Flinter F: Expert guidelines for the management of alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 2013, 24(3):364-375.
  • [39]Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, Bingham C, Cohen DJ, Delmas Y, Douglas K, Eitner F, Feldkamp T, Fouque D, Furman RR, Gaber O, Herthelius M, Hourmant M, Karpman D, Lebranchu Y, Mariat C, Menne J, Moulin B, Nurnberger J, Ogawa M, Remuzzi G, Richard T, Sberro-Soussan R, Severino B, Sheerin NS, Trivelli A, et al.: Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013, 368(23):2169-2181.
  • [40]Fakhouri F, Delmas Y, Provot F, Barbet C, Karras A, Makdassi R, Courivaud C, Rifard K, Servais A, Allard C, Besson V, Cousin M, Chatelet V, Goujon JM, Coindrew JP, Laurent G, Loirat C, Fremeaux-Bacchi V: Insights from the use in clinical practice of Eculizumab in adult patients with atypical Hemolytic Uremic syndrome affecting the native kidneys: an analysis of 19 cases. Am J Kidney Dis 2013, 63(1):40-48.
  • [41]Zuber J, Fakhouri F, Roumenina LT, Loirat C, Fremeaux-Bacchi V: Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 2012, 8(11):643-657.
  • [42]Kaplan M: Eculizumab (Alexion). Curr Opin Investig Drugs 2002, 3(7):1017-1023.
  • [43]Ghali J, Nicholls K, Denaro C, Sillence D, Chapman I, Goldblatt J, Thomas M, Fletcher J, Australian State Fabry Disease Treatment C: Effect of reduced agalsidase Beta dosage in fabry patients: the Australian experience. JIMD reports 2012, 3:33-43.
  • [44]Germain DP, Weidemann F, Abiose A, Patel MR, Cizmarik M, Cole JA, Beitner-Johnson D, Benistan K, Cabrera G, Charrow J, Kantola I, Linhart A, Nicholls K, Niemann M, Scott CR, Sims K, Waldek S, Warnock DG, Strotmann J: Analysis of left ventricular mass in untreated men and in men treated with agalsidase-beta: data from the Fabry Registry. Genet Med 2013, 15(12):958-965.
  • [45]Warnock DG, Ortiz A, Mauer M, Linthorst GE, Oliveira JP, Serra AL, Marodi L, Mignani R, Vujkovac B, Beitner-Johnson D, Lemay R, Cole JA, Svarstad E, Waldek S, Germain DP, Wanner C: Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrol Dial Transplant 2012, 27(3):1042-1049.
  • [46]Wanner C, Oliveira JP, Ortiz A, Mauer M, Germain DP, Linthorst GE, Serra AL, Marodi L, Mignani R, Cianciaruso B, Vujkovac B, Lemay R, Beitner-Johnson D, Waldek S, Warnock DG: Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry Registry. Clin J Am Soc Nephrol 2010, 5(12):2220-2228.
  • [47]Feriozzi S, Torras J, Cybulla M, Nicholls K, Sunder-Plassmann G, West M, Investigators FOS: The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin J Am Soc Nephrol 2012, 7(1):60-69.
  • [48]Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D: Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 1999, 353(9147):103-107.
  • [49]Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT: Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935–1980. Am J Kidney Dis 1983, 2(6):630-639.
  • [50]Corradi V, Gastaldon F, Virzi GM, de Cal M, Soni S, Chionh C, Cruz DN, Clementi M, Ronco C: Clinical pattern of adult polycystic kidney disease in a northeastern region of Italy. Clin Nephrol 2009, 72(4):259-267.
  • [51]Dalgaard OZ: Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scand Suppl 1957, 328:1-255.
  • [52]Torres VE, Harris PC: Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 2009, 76(2):149-168.
  • [53]Higashihara E, Nutahara K, Kojima M, Tamakoshi A, Yoshiyuki O, Sakai H, Kurokawa K: Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron 1998, 80(4):421-427.
  • [54]Davies F, Coles GA, Harper PS, Williams AJ, Evans C, Cochlin D: Polycystic kidney disease re-evaluated: a population-based study. Q J Med 1991, 79(290):477-485.
  • [55]Neumann HP, Jilg C, Bacher J, Nabulsi Z, Malinoc A, Hummel B, Hoffmann MM, Ortiz-Bruechle N, Glasker S, Pisarski P, Neeff H, Kramer-Guth A, Cybulla M, Hornberger M, Wilpert J, Funk L, Baumert J, Paatz D, Baumann D, Lahl M, Felten H, Hausberg M, Zerres K, Eng C: Epidemiology of autosomal-dominant polycystic kidney disease: an in-depth clinical study for south-western Germany. Nephrol Dial Transplant 2013, 28(6):1472-1487.
  文献评价指标  
  下载次数:18次 浏览次数:14次