期刊论文详细信息
BMC Nephrology
A protocol for the identification and validation of novel genetic causes of kidney disease
Melissa Little9  Helen Healy3  Cas Simons1  Ryan Taft1  Ernst Wolvetang2  Wendy E. Hoy3  Valentine Hyland1,12  Hugh J. McCarthy1,10  Cathy Quinlan5  George John1,13  Georgina Caruana7  Michel C. Tchan4  Gopala Rangan8  Stephen I. Alexander1,10  Peter Trnka1,14  Anne Cameron3  Minoru Takasato9  Michael Gabbett6  Julie McGaughran1,11  Barbara Maier9  Chirag Patel1,11  Andrew Mallett1 
[1] Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia;Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia;Centre for Kidney Disease Research, Centre for Chronic Disease and CKD.QLD, School of Medicine, The University of Queensland, St Lucia, Australia;Department of Genetic Medicine, Westmead Hospital, Sydney and Sydney Medical School, The University of Sydney, Sydney, Australia;Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia;School of Medicine, Griffith University, Brisbane, Australia;Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia;Department of Nephrology, Westmead Hospital, Sydney and Sydney Medical School, The University of Sydney, Sydney, Australia;Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia;Department of Nephrology, Children’s Hospital at Westmead, Sydney and Sydney Medical School, The University of Sydney, Sydney, Australia;Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia;Molecular Genetics Laboratory, Pathology Queensland and Royal Brisbane and Women’s Hospital, Brisbane, Australia;Kidney Health Service and Conjoint Kidney Research Laboratory, Royal Brisbane and Women’s Hospital, Brisbane, Australia;Queensland Child and Adolescent Renal Service, Lady Cilento Children’s Hospital, Brisbane, Australia
关键词: Induced pluripotent stem cell;    Genetic sequencing;    Nephrogenetics;    Nephrology;    Chronic kidney disease;   
Others  :  1225238
DOI  :  10.1186/s12882-015-0148-8
 received in 2015-07-09, accepted in 2015-09-07,  发布年份 2015
PDF
【 摘 要 】

Background

Genetic renal diseases (GRD) are a heterogeneous and incompletely understood group of disorders accounting for approximately 10 % of those diagnosed with kidney disease. The advent of Next Generation sequencing and new approaches to disease modelling may allow the identification and validation of novel genetic variants in patients with previously incompletely explained or understood GRD.

Methods/Design

This study will recruit participants in families/trios from a multidisciplinary sub-specialty Renal Genetics Clinic where known genetic causes of GRD have been excluded or where genetic testing is not available. After informed patient consent, whole exome and/or genome sequencing will be performed with bioinformatics analysis undertaken using a customised variant assessment tool. A rigorous process for participant data management will be undertaken. Novel genetic findings will be validated using patient-derived induced pluripotent stem cells via differentiation to renal and relevant extra-renal tissue phenotypes in vitro. A process for managing the risk of incidental findings and the return of study results to participants has been developed.

Discussion

This investigator-initiated approach brings together experts in nephrology, clinical and molecular genetics, pathology and developmental biology to discover and validate novel genetic causes for patients in Australia affected by GRD without a known genetic aetiology or pathobiology.

【 授权许可】

   
2015 Mallett et al.

【 预 览 】
附件列表
Files Size Format View
20150919021701856.pdf 995KB PDF download
Fig. 1. 79KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ, Atkins RC. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am Soc Nephrol. 2003; 14(7 Suppl 2):S131-138.
  • [2]White SL, Polkinghorne KR, Atkins RC, Chadban SJ. Comparison of the prevalence and mortality risk of CKD in Australia using the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study GFR estimating equations: the AusDiab (Australian Diabetes, Obesity and Lifestyle) Study. Am J Kidney Dis. 2010; 55(4):660-670.
  • [3]ABS. Australian Health Survey: Biomedical Results for Chronic Diseases, 2011–12. In. Canberra: Australian Bureau of Statistics; 2013.
  • [4]Chronic kidney disease - Regional variation in Australia. Australian Institute of Health and Welfare, Canberra; 2013.
  • [5]End-stage kidney disease in Australia: total incidence 2003–2007. Australian Institute of Health and Welfare, Canberra; 2011.
  • [6]Cass A, Chadban S, Gallagher M, Howard K, Jones A, McDonald S, Snelling P, White S. The economic impact of end-stage kidney disease in Australia: projections to 2020. Kidney Health Australia, Melbourne; 2010.
  • [7]Mallett A, Patel C, Salisbury A, Wang Z, Healy H, Hoy W. The prevalence and epidemiology of genetic renal disease amongst adults with chronic kidney disease in Australia. Orphanet J Rare Dis. 2014; 9:98. BioMed Central Full Text
  • [8]Fletcher J, McDonald S, Alexander SI. Prevalence of genetic renal disease in children. Pediatr Nephrol. 2013; 28(2):251-256.
  • [9]Levy M, Feingold J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 2000; 58(3):925-943.
  • [10]The 34th annual report: ANZDATA registry report 2011. Australia and New Zealand Dialysis and Transplant Registry, Adelaide; 2011.
  • [11]The 35th annual report: ANZDATA registry report 2012. Australia and New Zealand Dialysis and Transplant Registry, Adelaide; 2012.
  • [12]Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012; 367(25):2407-2418.
  • [13]Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953; 171(4356):737-738.
  • [14]Rabbani B, Mahdieh N, Hosomichi K, Nakaoka H, Inoue I. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet. 2012; 57(10):621-632.
  • [15]Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975; 94(3):441-448.
  • [16]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977; 74(12):5463-5467.
  • [17]Schmutz J, Wheeler J, Grimwood J, Dickson M, Yang J, Caoile C, Bajorek E, Black S, Chan YM, Denys M et al.. Quality assessment of the human genome sequence. Nature. 2004; 429(6990):365-368.
  • [18]Hayden EC. Technology: The $1,000 genome. Nature. 2014; 507(7492):294-295.
  • [19]Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloglu A, Ozen S, Sanjad S et al.. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009; 106(45):19096-19101.
  • [20]Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE et al.. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009; 461(7261):272-276.
  • [21]Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, Meisler MH, Goldstein DB. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet. 2012; 49(6):353-361.
  • [22]Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z et al.. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013; 369(16):1502-1511.
  • [23]Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, Ward P, Braxton A, Wang M, Buhay C et al.. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014; 312(18):1870-1879.
  • [24]Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, Das K, Toy T, Harry B, Yourshaw M et al.. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014; 312(18):1880-1887.
  • [25]Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, Smith RJ. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014; 25(1):55-64.
  • [26]Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F et al.. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013; 45(5):531-536.
  • [27]McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L, Hegde S, Feather S, Gilbert RD, Krischock L, Jones C et al.. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2013; 8(4):637-648.
  • [28]Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F et al.. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007; 119(4):e907-919.
  • [29]Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, Fang H, Song X, Cattran DC, Avila-Casado C et al.. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013; 123(12):5179-5189.
  • [30]Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A et al.. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012; 150(3):533-548.
  • [31]Taskiran EZ, Korkmaz E, Gucer S, Kosukcu C, Kaymaz F, Koyunlar C, Bryda EC, Chaki M, Lu D, Vadnagara K et al.. Mutations in ANKS6 cause a nephronophthisis-like phenotype with ESRD. J Am Soc Nephrol. 2014; 25(8):1653-61.
  • [32]Hoff S, Halbritter J, Epting D, Frank V, Nguyen TM, van Reeuwijk J, Boehlke C, Schell C, Yasunaga T, Helmstadter M et al.. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet. 2013; 45(8):951-956.
  • [33]Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE et al.. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet. 2013; 93(5):915-925.
  • [34]Otto EA, Hurd TW, Airik R, Chaki M, Zhou W, Stoetzel C, Patil SB, Levy S, Ghosh AK, Murga-Zamalloa CA et al.. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet. 2010; 42(10):840-850.
  • [35]Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, Heckenlively JR, Otto EA, Hildebrandt F. Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int. 2011; 80(11):1239-1245.
  • [36]Otto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT et al.. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet. 2011; 48(2):105-116.
  • [37]Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S, Chaki M, Allen SJ, Soliman NA, Hildebrandt F, Otto EA et al.. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet. 2013; 132(8):865-884.
  • [38]Halbritter J, Diaz K, Chaki M, Porath JD, Tarrier B, Fu C, Innis JL, Allen SJ, Lyons RH, Stefanidis CJ et al.. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J Med Genet. 2012; 49(12):756-767.
  • [39]Otto EA, Tory K, Attanasio M, Zhou W, Chaki M, Paruchuri Y, Wise EL, Wolf MT, Utsch B, Becker C et al.. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet. 2009; 46(10):663-670.
  • [40]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4):663-676.
  • [41]Sallam K, Kodo K, Wu JC. Modeling inherited cardiac disorders. Circ J. 2014; 78(4):784-794.
  • [42]Suzuki T, Mayhew C, Sallese A, Chalk C, Carey BC, Malik P, Wood RE, Trapnell BC. Use of induced pluripotent stem cells to recapitulate pulmonary alveolar proteinosis pathogenesis. Am J Respir Crit Care Med. 2014; 189(2):183-193.
  • [43]Leung A, Nah SK, Reid W, Ebata A, Koch CM, Monti S, Genereux JC, Wiseman RL, Wolozin B, Connors LH et al.. Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis. Stem Cell Reports. 2013; 1(5):451-463.
  • [44]Chamberlain SJ, Li XJ, Lalande M. Induced pluripotent stem (iPS) cells as in vitro models of human neurogenetic disorders. Neurogenetics. 2008; 9(4):227-235.
  • [45]Song B, Smink AM, Jones CV, Callaghan JM, Firth SD, Bernard CA, Laslett AL, Kerr PG, Ricardo SD. The directed differentiation of human iPS cells into kidney podocytes. PLoS One. 2012; 7(9):e46453.
  • [46]Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol. 2014; 25(6):1211-1225.
  • [47]Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montserrat N et al.. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013; 15(12):1507-1515.
  • [48]Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014; 16(1):118-126.
  • [49]Simons C, Rash LD, Crawford J, Ma L, Cristofori-Armstrong B, Miller D, Ru K, Baillie GJ, Alanay Y, Jacquinet A et al.. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nat Genet. 2015; 47(1):73-77.
  • [50]Simons C, Wolf NI, McNeil N, Caldovic L, Devaney JM, Takanohashi A, Crawford J, Ru K, Grimmond SM, Miller D et al.. A de novo mutation in the beta-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet. 2013; 92(5):767-773.
  • [51]Taft RJ, Vanderver A, Leventer RJ, Damiani SA, Simons C, Grimmond SM, Miller D, Schmidt J, Lockhart PJ, Pope K et al.. Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am J Hum Genet. 2013; 92(5):774-780.
  • [52]Raya A, Rodriguez-Piza I, Navarro S, Richaud-Patin Y, Guenechea G, Sanchez-Danes A, Consiglio A, Bueren J, Izpisua Belmonte JC. A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nat Protoc. 2010; 5(4):647-660.
  • [53]Ye L, Muench MO, Fusaki N, Beyer AI, Wang J, Qi Z, Yu J, Kan YW. Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl Med. 2013; 2(8):558-566.
  • [54]Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y et al.. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012; 7(12):2080-2089.
  • [55]Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85(8):348-362.
  • [56]Trent R, Otlowski M, Ralston M, Lonsdale L, Young M, Suthers G, Griffiths P, Delatycki M, Christodoulou J, Barlow-Stewart K. Medical genetic testing information for health professionals. NHMRC Publications, Canberra; 2010.
  • [57]Smith LA, Douglas J, Braxton AA, Kramer K. Reporting Incidental Findings in Clinical Whole Exome Sequencing: Incorporation of the 2013 ACMG Recommendations into Current Practices of Genetic Counseling. J Genet Couns. 2014.
  • [58]Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, McGuire AL, Nussbaum RL, O’Daniel JM, Ormond KE et al.. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013; 15(7):565-574.
  • [59]Dorschner MO, Amendola LM, Turner EH, Robertson PD, Shirts BH, Gallego CJ, Bennett RL, Jones KL, Tokita MJ, Bennett JT et al.. Actionable, pathogenic incidental findings in 1,000 participants’ exomes. Am J Hum Genet. 2013; 93(4):631-640.
  • [60]Johnston JJ, Rubinstein WS, Facio FM, Ng D, Singh LN, Teer JK, Mullikin JC, Biesecker LG. Secondary variants in individuals undergoing exome sequencing: screening of 572 individuals identifies high-penetrance mutations in cancer-susceptibility genes. Am J Hum Genet. 2012; 91(1):97-108.
  • [61]Kirby A, Gnirke A, Jaffe DB, Baresova V, Pochet N, Blumenstiel B, Ye C, Aird D, Stevens C, Robinson JT et al.. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013; 45(3):299-303.
  • [62]Bleyer AJ, Kmoch S, Antignac C, Robins V, Kidd K, Kelsoe JR, Hladik G, Klemmer P, Knohl SJ, Scheinman SJ et al.. Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin J Am Soc Nephrol. 2014; 9(3):527-535.
  • [63]Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet’al P, Kalbacova M, Baresova V, Sikora J, Blazkova H, Zivny J et al.. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009; 85(2):204-213.
  • [64]Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM et al.. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002; 39(12):882-892.
  • [65]Ekici AB, Hackenbeck T, Moriniere V, Pannes A, Buettner M, Uebe S, Janka R, Wiesener A, Hermann I, Grupp S et al.. Renal fibrosis is the common feature of Autosomal Dominant Tubulointerstitial Kidney Diseases caused by mutations in mucin 1 or uromodulin. Kidney Int. 2014; 86(3)):589-99.
  • [66]Bollee G, Dahan K, Flamant M, Moriniere V, Pawtowski A, Heidet L, Lacombe D, Devuyst O, Pirson Y, Antignac C et al.. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol. 2011; 6(10):2429-2438.
  • [67]Qi XP, Du ZF, Ma JM, Chen XL, Zhang Q, Fei J, Wei XM, Chen D, Ke HP, Liu XZ et al.. Genetic diagnosis of autosomal dominant polycystic kidney disease by targeted capture and next-generation sequencing: utility and limitations. Gene. 2013; 516(1):93-100.
  • [68]Paul BM, Consugar MB, Ryan Lee M, Sundsbak JL, Heyer CM, Rossetti S, Kubly VJ, Hopp K, Torres VE, Coto E et al.. Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families. Kidney Int. 2014; 85(2):383-392.
  • [69]Artuso R, Fallerini C, Dosa L, Scionti F, Clementi M, Garosi G, Massella L, Epistolato MC, Mancini R, Mari F et al.. Advances in Alport syndrome diagnosis using next-generation sequencing. Eur J Hum Genet. 2012; 20(1):50-57.
  • [70]Beicht S, Strobl-Wildemann G, Rath S, Wachter O, Alberer M, Kaminsky E, Weber LT, Hinrichsen T, Klein HG, Hoefele J. Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome. Gene. 2013; 526(2):474-477.
  • [71]Gibson J, Gilbert RD, Bunyan DJ, Angus EM, Fowler DJ, Ennis S. Exome analysis resolves differential diagnosis of familial kidney disease and uncovers a potential confounding variant. Genet Res. 2013; 95(6):165-173.
  • [72]Fallerini C, Dosa L, Tita R, Del Prete D, Feriozzi S, Gai G, et al. Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clin Genet. 2014;86(3):252–7.
  • [73]Chatterjee R, Hoffman M, Cliften P, Seshan S, Liapis H, Jain S. Targeted exome sequencing integrated with clinicopathological information reveals novel and rare mutations in atypical, suspected and unknown cases of Alport syndrome or proteinuria. PLoS One. 2013; 8(10):e76360.
  • [74]Wright C, Burton H, Hall A, Moorthie S, Pokorska-Bocci A, Sagoo G, Sanderson S, Skinne R. Next steps in the sequence - the implications of whole genome sequencing for health in the UK. Foundation for Genomics and Population Health, Cambridge; 2011.
  • [75]Ross LF, Rothstein MA, Clayton EW. Mandatory extended searches in all genome sequencing: “incidental findings,” patient autonomy, and shared decision making. JAMA. 2013; 310(4):367-368.
  • [76]Klitzman R, Appelbaum PS, Chung W. Return of secondary genomic findings vs patient autonomy: implications for medical care. JAMA. 2013; 310(4):369-370.
  • [77]McGuire AL, Joffe S, Koenig BA, Biesecker BB, McCullough LB, Blumenthal-Barby JS, Caulfield T, Terry SF, Green RC. Point-counterpoint. Ethics and genomic incidental findings. Science. 2013; 340(6136):1047-1048.
  • [78]Wolf SM, Annas GJ, Elias S. Point-counterpoint. Patient autonomy and incidental findings in clinical genomics. Science. 2013; 340(6136):1049-1050.
  • [79]Christenhusz GM, Devriendt K, Dierickx K. To tell or not to tell? A systematic review of ethical reflections on incidental findings arising in genetics contexts. Eur J Hum Genet. 2013; 21(3):248-255.
  • [80]Christenhusz GM, Devriendt K, Dierickx K. Disclosing incidental findings in genetics contexts: a review of the empirical ethical research. Eur J Med Genet. 2013; 56(10):529-540.
  • [81]Abdul-Karim R, Berkman BE, Wendler D, Rid A, Khan J, Badgett T, Hull SC. Disclosure of incidental findings from next-generation sequencing in pediatric genomic research. Pediatrics. 2013; 131(3):564-571.
  • [82]Cho MK. Understanding incidental findings in the context of genetics and genomics. J Law Med Ethics. 2008; 36(2):280-285.
  • [83]Wilkie T. Genetics and insurance in Britain: why more than just the Atlantic divides the English-speaking nations. Nat Genet. 1998; 20(2):119-121.
  • [84]Malpas PJ. Is genetic information relevantly different from other kinds of non-genetic information in the life insurance context? J Med Ethics. 2008; 34(7):548-551.
  • [85]Wilkinson R. Unjustified discrimination: is the moratorium on the use of genetic test results by insurers a contradiction in terms? Health Care Anal. 2010; 18(3):279-293.
  • [86]Keogh LA, Otlowski MF. Life insurance and genetic test results: a mutation carrier’s fight to achieve full cover. Med J Aust. 2013; 199(5):363-366.
  • [87]Wright GE, Koornhof PG, Adeyemo AA, Tiffin N. Ethical and legal implications of whole genome and whole exome sequencing in African populations. BMC Med Ethics. 2013; 14:21. BioMed Central Full Text
  • [88]McDonald SA, Mardis ER, Ota D, Watson MA, Pfeifer JD, Green JM. Comprehensive genomic studies: emerging regulatory, strategic, and quality assurance challenges for biorepositories. Am J Clin Pathol. 2012; 138(1):31-41.
  • [89]Hook CC, DiMagno EP, Tefferi A. Primer on medical genomics. Part XIII: Ethical and regulatory issues. Mayo Clin Proc. 2004; 79(5):645-650.
  • [90]Ding LE, Burnett L, Chesher D. The impact of reporting incidental findings from exome and whole-genome sequencing: predicted frequencies based on modeling. Genet Med. 2015;17(3):197–204.
  • [91]Tabor HK, Auer PL, Jamal SM, Chong JX, Yu JH, Gordon AS, Graubert TA, O’Donnell CJ, Rich SS, Nickerson DA et al.. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. Am J Hum Genet. 2014; 95(2):183-193.
  • [92]Bennette CS, Gallego CJ, Burke W, Jarvik GP, Veenstra DL. The cost-effectiveness of returning incidental findings from next-generation genomic sequencing. Genet Med. 2015;17(7):587–95.
  • [93]Green RC, Lupski JR, Biesecker LG. Reporting genomic sequencing results to ordering clinicians: incidental, but not exceptional. JAMA. 2013; 310(4):365-366.
  • [94]van El CG, Dondorp WJ, de Wert GM, Cornel MC. Call for prudence in whole-genome testing. Science. 2013; 341(6149):958-959.
  • [95]Platt J, Cox R, Enns GM. Points to Consider in the Clinical Use of NGS Panels for Mitochondrial Disease: An Analysis of Gene Inclusion and Consent Forms. J Genet Couns. 2014.
  • [96]Nayler S, Gatei M, Kozlov S, Gatti R, Mar JC, Wells CA, Lavin M, Wolvetang E. Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype. Stem Cells Transl Med. 2012; 1(7):523-535.
  • [97]Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, Kao LP, Morrow CA, Thakar NY, Soo SY et al.. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013; 31(3):467-478.
  • [98]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al.. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121):819-823.
  • [99]Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013; 31(3):230-232.
  • [100]Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-826.
  • [101]Roy A, Goodman JH, Begum G, Donnelly BF, Pittman G, Weinman EJ, Sun D, Subramanya AR. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing. Am J Physiol Renal Physiol. 2015; 308(4):F366-376.
  • [102]Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK et al.. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013; 13(6):653-658.
  • [103]Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015; 21(3):256-262.
  文献评价指标  
  下载次数:5次 浏览次数:7次