期刊论文详细信息
Molecular Neurodegeneration
Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics
Daryl A Bosco1  Jeffrey A Nickerson3  Alexandre J C Quaresma3  Kristin J Boggio2  Ru-Ju Chian2  Reddy Ranjith K Sama2  Catherine L Ward2  Laura J Kaushansky2  Desiree M Baron2 
[1] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA;Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA;Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
关键词: Oxidative stress;    FUS/TLS;    Frontotemporal lobar degeneration;    Amyotrophic lateral sclerosis;    Stress granule;   
Others  :  862191
DOI  :  10.1186/1750-1326-8-30
 received in 2013-04-16, accepted in 2013-08-27,  发布年份 2013
PDF
【 摘 要 】

Background

Amyotrophic lateral sclerosis (ALS)-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is concentrated within cytoplasmic stress granules under conditions of induced stress. Since only the mutants, but not the endogenous wild-type FUS, are associated with stress granules under most of the stress conditions reported to date, the relationship between FUS and stress granules represents a mutant-specific phenotype and thus may be of significance in mutant-induced pathogenesis. While the association of mutant-FUS with stress granules is well established, the effect of the mutant protein on stress granules has not been examined. Here we investigated the effect of mutant-FUS on stress granule formation and dynamics under conditions of oxidative stress.

Results

We found that expression of mutant-FUS delays the assembly of stress granules. However, once stress granules containing mutant-FUS are formed, they are more dynamic, larger and more abundant compared to stress granules lacking FUS. Once stress is removed, stress granules disassemble more rapidly in cells expressing mutant-FUS. These effects directly correlate with the degree of mutant-FUS cytoplasmic localization, which is induced by mutations in the nuclear localization signal of the protein. We also determine that the RGG domains within FUS play a key role in its association to stress granules. While there has been speculation that arginine methylation within these RGG domains modulates the incorporation of FUS into stress granules, our results demonstrate that this post-translational modification is not involved.

Conclusions

Our results indicate that mutant-FUS alters the dynamic properties of stress granules, which is consistent with a gain-of-toxic mechanism for mutant-FUS in stress granule assembly and cellular stress response.

【 授权许可】

   
2013 Baron et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725011928252.pdf 2306KB PDF download
62KB Image download
104KB Image download
84KB Image download
133KB Image download
52KB Image download
90KB Image download
【 图 表 】

【 参考文献 】
  • [1]Calvio C, Neubauer G, Mann M, Lamond AI: Identification of hnRNP P2 as TLS/FUS using electrospray mass spectrometry. RNA 1995, 1:724-733.
  • [2]Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323:1205-1208.
  • [3]Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, et al.: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323:1208-1211.
  • [4]Bosco DA, Landers JE: Genetic determinants of amyotrophic lateral sclerosis as therapeutic targets. CNS Neurol Disord Drug Targets 2010, 9:779-790.
  • [5]Dormann D, Madl T, Valori CF, Bentmann E, Tahirovic S, Abou-Ajram C, Kremmer E, Ansorge O, Mackenzie IR, Neumann M, Haass C: Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 2012, 31:4258-4275.
  • [6]Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B, et al.: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 2010, 29:2841-2857.
  • [7]Andersson MK, Stahlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, Nilsson O, Aman P: The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 2008, 9:37. BioMed Central Full Text
  • [8]Zinszner H, Sok J, Immanuel D, Yin Y, Ron D: TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci 1997, 110(Pt 15):1741-1750.
  • [9]Fujii R, Okabe S, Urushido T, Inoue K, Yoshimura A, Tachibana T, Nishikawa T, Hicks GG, Takumi T: The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol 2005, 15:587-593.
  • [10]Fujii R, Takumi T: TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 2005, 118:5755-5765.
  • [11]Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C, et al.: Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nature Neurosci 2012, 15:1488-1497.
  • [12]Halliday G, Bigio EH, Cairns NJ, Neumann M, Mackenzie IR, Mann DM: Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathol 2012, 124:373-382.
  • [13]Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, Sapp P, McKenna-Yasek D, Brown RH Jr, Hayward LJ: Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Human Mol Genet 2010, 19:4160-4175.
  • [14]Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, Shibata A, Urano F, Sobue G, Ohno K: Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep 2012, 2:529.
  • [15]Rogelj B, Easton LE, Bogu GK, Stanton LW, Rot G, Curk T, Zupan B, Sugimoto Y, Modic M, Haberman N, et al.: Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep 2012, 2:603.
  • [16]Tan AY, Riley TR, Coady T, Bussemaker HJ, Manley JL: TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proc Natl Acad Sci U S A 2012, 109:6030-6035.
  • [17]Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R: Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 2008, 454:126-130.
  • [18]Da Cruz S, Cleveland DW: Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011, 21:904-919.
  • [19]Dormann D, Haass C: TDP-43 and FUS: a nuclear affair. Trends Neurosci 2011. http://www.ncbi.nlm.nih.gov/pubmed/21700347 webcite
  • [20]Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141-150.
  • [21]Kedersha N, Anderson P: Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002, 30:963-969.
  • [22]Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L: Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013, 152:791-805.
  • [23]Wolozin B: Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 2012, 7:56. BioMed Central Full Text
  • [24]Fujita K, Ito H, Nakano S, Kinoshita Y, Wate R, Kusaka H: Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease. Acta Neuropathol 2008, 116:439-445.
  • [25]Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderwyde T, Citro A, Mehta T, Zaarur N, McKee A, Bowser R, Sherman M, et al.: Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PloS One 2010, 5:e13250.
  • [26]Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 2012, 287:23079-23094.
  • [27]Daigle JG, Lanson NA Jr, Smith RB, Casci I, Maltare A, Monaghan J, Nichols CD, Kryndushkin D, Shewmaker F, Pandey UB: RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Human Mol Genet 2013.
  • [28]Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, Zhu H: Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 2010, 32:2323.e27-40.
  • [29]Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N: Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 2011, 69:152-162.
  • [30]Vance C, Scotter EL, Nishimura AL, Troakes C, Mitchell JC, Kathe C, Urwin H, Manser C, Miller CC, Hortobagyi T, et al.: ALS mutant FUS disrupts nuclear localisation and sequesters wild-type FUS within cytoplasmic stress granules. Human Mol Genet 2013, 22:2676-2688.
  • [31]Aulas A, Stabile S, Vande Velde C: Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol Neurodegener 2012, 7:54. BioMed Central Full Text
  • [32]Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P: Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 2000, 151:1257-1268.
  • [33]Rodriguez VM, Carrizales L, Jimenez-Capdeville ME, Dufour L, Giordano M: The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 2001, 55:301-308.
  • [34]Tabocova S, Hunter ES 3rd, Gladen BC: Developmental toxicity of inorganic arsenic in whole embryo: culture oxidation state, dose, time, and gestational age dependence. Toxicol Appl Pharmacol 1996, 138:298-307.
  • [35]Sama RR, Ward CL, Kaushansky LJ, Lemay N, Ishigaki S, Urano F, Bosco DA: FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress. J Cell Physiol 2013, 228:2222-2231.
  • [36]Kedersha N, Anderson P: Mammalian stress granules and processing bodies. Methods Enzymol 2007, 431:61-81.
  • [37]McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, Rouleau GA, Vande Velde C: TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Human Mol Genet 2011.
  • [38]Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, Dahrouge S, Antel JP: Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 1992, 194:209-221.
  • [39]Huang C, Zhou H, Tong J, Chen H, Liu YJ, Wang D, Wei X, Xia XG: FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet 2011, 7:e1002011.
  • [40]Ju S, Tardiff DF, Han H, Divya K, Zhong Q, Maquat LE, Bosco DA, Hayward LJ, Brown RH Jr, Lindquist S, et al.: A Yeast Model of FUS/TLS-Dependent Cytotoxicity. PLoS Biol 2011, 9:e1001052.
  • [41]Lanson NA Jr, Maltare A, King H, Smith R, Kim JH, Taylor JP, Lloyd TE, Pandey UB: A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Human Mol Genet 2011, 20:2510-2523.
  • [42]Guil S, Long JC, Caceres JF: hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006, 26:5744-5758.
  • [43]Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005, 169:871-884.
  • [44]Nickerson JA: The biochemistry of RNA metabolism studied in situ. RNA Biol 2009, 6:25-30.
  • [45]Quaresma AJ, Sievert R, Nickerson JA: Regulation of mRNA Export by the PI3 kinase / AKT Signal Transduction Pathway. Mol Biol Cell 2013.
  • [46]Buchan JR, Parker R: Eukaryotic stress granules: the ins and outs of translation. Mol Cell 2009, 36:932-941.
  • [47]Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003, 160:823-831.
  • [48]Buchan JR, Yoon JH, Parker R: Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 2011, 124:228-239.
  • [49]Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P, Good SK, Johnson BA, Herz J, Yu G: TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 2010, 31:1098-1108.
  • [50]De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C: The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Experimental Cell Res 2007, 313:4130-4144.
  • [51]Kedersha NL, Gupta M, Li W, Miller I, Anderson P: RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999, 147:1431-1442.
  • [52]Rajyaguru P, She M, Parker R: Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 2012, 45:244-254.
  • [53]Iko Y, Kodama TS, Kasai N, Oyama T, Morita EH, Muto T, Okumura M, Fujii R, Takumi T, Tate S, Morikawa K: Domain architectures and characterization of an RNA-binding protein, TLS. J Biol Chem 2004, 279:44834-44840.
  • [54]Cansizoglu AE, Lee BJ, Zhang ZC, Fontoura BM, Chook YM: Structure-based design of a pathway-specific nuclear import inhibitor. Nat Struct Mol Biol 2007, 14:452-454.
  • [55]Rappsilber J, Friesen WJ, Paushkin S, Dreyfuss G, Mann M: Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal Chem 2003, 75:3107-3114.
  • [56]Bedford MT, Clarke SG: Protein arginine methylation in mammals: who, what, and why. Molecular cell 2009, 33:1-13.
  • [57]Grant AJ, Lerner LM: Dialdehydes derived from adenine nucleosides as substrates and inhibitors of adenosine aminohydrolase. Biochemistry 1979, 18:2838-2842.
  • [58]Colombrita C, Onesto E, Megiorni F, Pizzuti A, Baralle FE, Buratti E, Silani V, Ratti A: TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 2012, 287:15635-15647.
  • [59]Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, Hafner M, Borkhardt A, Sander C, Tuschl T: RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol 2011, 18:1428-1431.
  • [60]Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD: Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS. PLoS Biol 2011, 9:e1000614.
  • [61]Rajyaguru P, Parker R: RGG motif proteins: modulators of mRNA functional states. Cell Cycle 2012, 11:2594-2599.
  • [62]Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S: Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Human Mol Genet 2012, 21:136-149.
  • [63]Yamaguchi A, Kitajo K: The Effect of PRMT1-Mediated Arginine Methylation on the Subcellular Localization, Stress Granules, and Detergent-Insoluble Aggregates of FUS/TLS. PloS One 2012, 7:e49267.
  文献评价指标  
  下载次数:19次 浏览次数:1次