期刊论文详细信息
Particle and Fibre Toxicology
A dysflagellar mutant of Leishmania (Viannia) braziliensis isolated from a cutaneous leishmaniasis patient
Silvia RB Uliana2  Fátima Ribeiro-Dias1  A Tania Bijovsky2  Yara M Traub-Cseko5  Juliany CF Rodrigues3  Edna AY Ishikawa4  André N Pitaluga5  Milton AP de Oliveira1  Miriam L Dorta1  Lucianna GN Lemes1  Ildefonso A da Silva1  Ledice IA Pereira1  Alexandre S Moura2  Danilo C Miguel2  Jenicer KU Yokoyama-Yasunaka2  Rogéria C Zauli2 
[1] Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil;Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brasil;Universidade Federal do Rio de Janeiro, Pólo Avançado de Xerém, Rio de Janeiro, Brazil;Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, 66055-240, Brazil;Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21045-900, Brazil
关键词: electron microscopy.;    Leishmania;    mutant;    flagellum;   
Others  :  1233124
DOI  :  10.1186/1756-3305-5-11
 received in 2011-12-16, accepted in 2012-01-11,  发布年份 2012
PDF
【 摘 要 】

Background

Parasites of the Leishmania genus alternate between the flagellated extracellular promastigote stage and intracellular amastigotes. Here we report the characterization of a Leishmania isolate, obtained from a cutaneous leishmaniasis patient, which presents peculiar morphological features.

Methods

The parasite was cultured in vitro and characterized morphologically using optical and electron microscopy. Identification was performed based on monoclonal antibodies and internal ribosomal spacer typing. In vitro macrophage cultures, murine experimental models and sand fly infections were used to evaluate infectivity in vitro and in vivo.

Results

The isolate was identified as Leishmania (Viannia) braziliensis. In the atypical promastigotes grown in culture, a short flagellum surrounded or interrupted by a protuberance of disorganized material was observed. A normal axoneme was present close to the basal body but without elongation much further outside the flagellar pocket. A disorganized swelling at the precocious end of the axoneme coincided with the lack of a paraflagellar rod structure. The isolate was able to infect macrophages in vitro, induce lesions in BALB/c mice and infect Lutzomyia longipalpis.

Conclusions

Notwithstanding the lack of an extracellular flagellum, this isolate infects macrophages in vitro and produces lesions when inoculated into mice. Moreover, it is able to colonize phlebotomine sand flies. Considering the importance attributed to the flagellum in the successful infection and survival of Leishmania in the insect midgut and in the invasion of macrophages, these findings may bring new light into the infectious mechanisms of L. (V.) braziliensis.

【 授权许可】

   
2012 Zauli et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151118163521461.pdf 9691KB PDF download
Figure 6. 26KB Image download
Figure 5. 148KB Image download
Figure 4. 183KB Image download
Figure 3. 90KB Image download
Figure 2. 29KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kamhawi S: Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends in Parasitology 2006, 22:439-445.
  • [2]Ramalho-Ortigao JM, Saraiva EM, Traub-Csekö YM: Sand fly-Leishmania interactions: long relationships are not necessarily easy. Open Parasitol J 2010, 4:195-204.
  • [3]Molyneux DH, Killick-Kendrick R: Morphology, ultrastructure and life cycles. In The Leishmaniases in Biology and Medicine. Edited by Peters W, Killick-Kendrick R. London: Academic Press; 1987:1-119.
  • [4]Killick-Kendrick R, Molyneux DH, Ashford RW: Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc R Soc Lond B Biol Sci 1974, 187:409-419.
  • [5]Warburg A, Tesh RB, McMahon-Pratt D: Studies on the attachment of Leishmania flagella to sand fly midgut epithelium. J Protozool 1989, 36:613-617.
  • [6]Bates PA: Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 2008, 11:340-344.
  • [7]Cuvillier A, Miranda JC, Ambit A, Barral A, Merlin G: Abortive infection of Lutzomyia longipalpis insect vectors by aflagellated LdARL-3A-Q70L overexpressing Leishmania amazonensis parasites. Cell Microbiol 2003, 5:717-728.
  • [8]Forestier CL, Machu C, Loussert C, Pescher P, Spath GF: Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe 2011, 9:319-330.
  • [9]Lainson R, Shaw JJ, Ward RD, Fraiha H: Leishmaniasis in Brazil. IX. Considerations on the Leishmania braziliensis complex. Importance of sandflies of the genus Psychodopygus (Mangabeira) in the transmission of L. braziliensis braziliensis in north Brazil. Trans R Soc Trop Med Hyg 1973, 67:184-196.
  • [10]Oliveira MA, Pires Ada S, de Bastos RP, Lima GM, Pinto SA, Pereira LI, Pereira AJ, Abrahamsohn Ide A, Dorta ML, Ribeiro-Dias F: Leishmania spp. parasite isolation through inoculation of patient biopsy macerates in interferon gamma knockout mice. Rev Inst Med Trop Sao Paulo 2010, 52:83-88.
  • [11]Uliana SR, Nelson K, Beverley SM, Camargo EP, Floeter-Winter LM: Discrimination amongst Leishmania by polymerase chain reaction and hybridization with small subunit ribosomal DNA derived oligonucleotides. J Eukaryot Microbiol 1994, 41:324-330.
  • [12]Castilho TM, Shaw JJ, Floeter-Winter LM: New PCR assay using glucose-6-phosphate dehydrogenase for identification of Leishmania species. J Clin Microbiol 2003, 41:540-546.
  • [13]Zauli-Nascimento RC, Miguel DC, Yokoyama-Yasunaka JK, Pereira LI, Pelli de Oliveira MA, Ribeiro-Dias F, Dorta ML, Uliana SR: In vitro sensitivity of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis Brazilian isolates to meglumine antimoniate and amphotericin B. Trop Med Int Health 2010, 15:68-76.
  • [14]McMahon-Pratt D, Bennett E, David JR: Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. J Immunol 1982, 129:926-927.
  • [15]Shaw JJ, Ishikawa EA, Lainson R: A rapid and sensitive method for the identification of Leishmania with monoclonal antibodies using fluorescein-labelled avidin. Trans R Soc Trop Med Hyg 1989, 83:783-784.
  • [16]Shaw JJ, De Faria DL, Basano SA, Corbett CE, Rodrigues CJ, Ishikawa EA, Camargo LM: The aetiological agents of American cutaneous leishmaniasis in the municipality of Monte Negro, Rondonia state, western Amazonia, Brazil. Ann Trop Med Parasitol 2007, 101:681-688.
  • [17]Medina-Acosta E, Cross GAM: Rapid isolation of DNA from trypanosomatid protozoa using a simple mini-prep procedure. Mol Biochem Parasitol 1993, 59:327-329.
  • [18]Cupolillo E, Grimaldi G Jr, Momen H, Beverley SM: Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Mol Biochem Parasitol 1995, 73:145-155.
  • [19]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [20]Swofford D, Paup L: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 1998.
  • [21]Ferreira RC, De Souza AA, Freitas RA, Campaner M, Takata CS, Barrett TV, Shaw JJ, Teixeira MM: A phylogenetic lineage of closely related trypanosomes (Trypanosomatidae, Kinetoplastida) of anurans and sand flies (Psychodidae, Diptera) sharing the same ecotopes in brazilian amazonia. J Eukaryot Microbiol 2008, 55:427-435.
  • [22]Zamboni DS, Rabinovitch M: Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infection and Immunity 2003, 71:1225-1233.
  • [23]Brazil RP, Brazil BG: Biologia de Flebotomíneos neotropicais. In Flebotomíneos do Brasil. Edited by Rangel EF, Lainson R. Rio de Janeiro: Editora Fiocruz; 2003:257-274.
  • [24]Bezerra-Vasconcelos DR, Melo LM, Albuquerque ES, Luciano MC, Bevilaqua CM: Real-time PCR to assess the Leishmania load in Lutzomyia longipalpis sand flies: screening of target genes and assessment of quantitative methods. Exp Parasitol 2011, 129:234-239.
  • [25]Degrave W, Fernandes O, Campbell D, Bozza M, Lopes U: Use of molecular probes and PCR for detection and typing of Leishmania - a mini-review. Mem Inst Oswaldo Cruz 1994, 89:463-469.
  • [26]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  • [27]Santrich C, Moore L, Sherwin T, Bastin P, Brokaw C, Gull K, LeBowitz JH: A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol Biochem Parasitol 1997, 90:95-109.
  • [28]Maga JA, LeBowitz JH: Unravelling the kinetoplastid paraflagellar rod. Trends in Cell Biology 1999, 9:409-413.
  • [29]Harder S, Thiel M, Clos J, Bruchhaus I: Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in Leishmania donovani. PLoS Negl Trop Dis 2010, 4:e586.
  • [30]Adhiambo C, Forney JD, Asai DJ, LeBowitz JH: The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol Biochem Parasitol 2005, 143:216-225.
  • [31]Tammana TV, Sahasrabuddhe AA, Bajpai VK, Gupta CM: ADF/cofilin-driven actin dynamics in early events of Leishmania cell division. J Cell Sci 2010, 123:1894-1901.
  • [32]Erdmann M, Scholz A, Melzer IM, Schmetz C, Wiese M: Interacting protein kinases involved in the regulation of flagellar length. Mol Biol Cell 2006, 17:2035-2045.
  • [33]Bengs F, Scholz A, Kuhn D, Wiese M: LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol Microbiol 2005, 55:1606-1615.
  • [34]Thiel M, Harder S, Wiese M, Kroemer M, Bruchhaus I: Involvement of a Leishmania thymidine kinase in flagellum formation, promastigote shape and growth as well as virulence. Mol Biochem Parasitol 2008, 158:152-162.
  • [35]Myskova J, Svobodova M, Beverley SM, Volf P: A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect 2007, 9:317-324.
  • [36]Maia C, Seblova V, Sadlova J, Votypka J, Volf P: Experimental transmission of Leishmania infantum by two major vectors: a comparison between a viscerotropic and a dermotropic strain. PLoS Negl Trop Dis 2011, 5:e1181.
  文献评价指标  
  下载次数:36次 浏览次数:32次