期刊论文详细信息
Molecular Neurodegeneration
Synaptotagmins interact with APP and promote Aβ generation
Dora M. Kovacs2  Rudolph E. Tanzi2  Oksana Berezovska1  Carla D’Avanzo2  Vivek Gautam2 
[1] MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA;Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, MA, USA
关键词: Proteomics;    Synaptic vesicles;    Synaptotagmin;    APP-interacting proteins;    ;    BACE1;    APP;    Alzheimer’s disease;   
Others  :  1221213
DOI  :  10.1186/s13024-015-0028-5
 received in 2015-01-07, accepted in 2015-07-06,  发布年份 2015
PDF
【 摘 要 】

Background

Accumulation of the β-amyloid peptide (Aβ) is a major pathological hallmark of Alzheimer’s disease (AD). Recent studies have shown that synaptic Aβ toxicity may directly impair synaptic function. However, proteins regulating Aβ generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aβ generation.

Results

Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, −2 and −9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aβ levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50 % reduction in secreted Aβ generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aβ40 and Aβ42 generation. As secreted sAPPβ levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aβ generation by modulating BACE1-mediated cleavage of APP.

Conclusion

Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aβ generation and thus may play an important role in the pathogenesis of AD.

【 授权许可】

   
2015 Gautam et al.

【 预 览 】
附件列表
Files Size Format View
20150728044025983.pdf 2659KB PDF download
Fig. 8. 32KB Image download
Fig. 7. 33KB Image download
Fig. 6. 29KB Image download
Fig. 5. 36KB Image download
Fig. 4. 43KB Image download
Fig. 3. 55KB Image download
Fig. 2. 42KB Image download
Fig. 1. 64KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Cummings JL. Alzheimer’s disease. N Engl J Med. 2004; 351(1):56-67.
  • [2]Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984; 120(3):885-890.
  • [3]Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986; 261(13):6084-6089.
  • [4]Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986; 83(11):4044-4048.
  • [5]Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005; 120(4):545-555.
  • [6]Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron. 2004; 44(1):181-193.
  • [7]Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008; 283(44):29615-29619.
  • [8]Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem. 2005; 38:105-127.
  • [9]Citron M. Beta-secretase inhibition for the treatment of Alzheimer’s disease--promise and challenge. Trends Pharmacol Sci. 2004; 25(2):92-97.
  • [10]De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron. 2003; 38(1):9-12.
  • [11]De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W et al.. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998; 391(6665):387-390.
  • [12]Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature. 1992; 357(6378):500-503.
  • [13]Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D et al.. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature. 1999; 402(6761):537-540.
  • [14]Vassar R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci. 2004; 23(1–2):105-114.
  • [15]Xia W, Wolfe MS. Intramembrane proteolysis by presenilin and presenilin-like proteases. J Cell Sci. 2003; 116(Pt 14):2839-2844.
  • [16]Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007; 8(2):101-112.
  • [17]Spires TL, Hyman BT. Neuronal structure is altered by amyloid plaques. Rev Neurosci. 2004; 15(4):267-278.
  • [18]Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z et al.. Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci. 2009; 29(35):10788-10801.
  • [19]Ramaker JM, Swanson TL, Copenhaver PF. Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci. 2013; 33(24):10165-10181.
  • [20]Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G et al.. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience. 1999; 90(1):1-13.
  • [21]Weyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M et al.. APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J. 2011; 30(11):2266-2280.
  • [22]Buggia-Prevot V, Fernandez CG, Udayar V, Vetrivel KS, Elie A, Roseman J et al.. A function for EHD family proteins in unidirectional retrograde dendritic transport of BACE1 and Alzheimer’s disease Abeta production. Cell Rep. 2013; 5(6):1552-1563.
  • [23]Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron. 2000; 28(2):449-459.
  • [24]Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL et al.. Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci. 1998; 18(23):9629-9637.
  • [25]Lazarov O, Lee M, Peterson DA, Sisodia SS. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci. 2002; 22(22):9785-9793.
  • [26]Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al.. APP processing and synaptic function. Neuron. 2003; 37(6):925-937.
  • [27]Sheng JG, Price DL, Koliatsos VE. Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci. 2002; 22(22):9794-9799.
  • [28]Bai Y, Markham K, Chen F, Weerasekera R, Watts J, Horne P et al.. The in vivo brain interactome of the amyloid precursor protein. Mol Cell Proteomics. 2008; 7(1):15-34.
  • [29]Norstrom EM, Zhang C, Tanzi R, Sisodia SS. Identification of NEEP21 as a ss-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci. 2010; 30(46):15677-15685.
  • [30]Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem. 2008; 77:615-641.
  • [31]Craxton M. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans. BMC Genomics. 2007; 8:259. BioMed Central Full Text
  • [32]Perin MS, Brose N, Jahn R, Sudhof TC. Domain structure of synaptotagmin (p65). J Biol Chem. 1991; 266(1):623-629.
  • [33]Perin MS, Fried VA, Mignery GA, Jahn R, Sudhof TC. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature. 1990; 345(6272):260-263.
  • [34]Xu J, Mashimo T, Sudhof TC. Synaptotagmin-1, −2, and −9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron. 2007; 54(4):567-581.
  • [35]Frykman S, Hur JY, Franberg J, Aoki M, Winblad B, Nahalkova J et al.. Synaptic and endosomal localization of active gamma-secretase in rat brain. PLoS One. 2010; 5(1): Article ID e8948
  • [36]Groemer TW, Thiel CS, Holt M, Riedel D, Hua Y, Huve J et al.. Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One. 2011; 6(4): Article ID e18754
  • [37]Gautam V, D’Avanzo C, Hebisch M, Kovacs DM, Kim DY. BACE1 activity regulates cell surface contactin-2 levels. Mol Neurodegener. 2014; 9:4. BioMed Central Full Text
  • [38]Gautam V, Trinidad JC, Rimerman RA, Costa BM, Burlingame AL, Monaghan DT. Nedd4 is a specific E3 ubiquitin ligase for the NMDA receptor subunit GluN2D. Neuropharmacology. 2013; 74:96-107.
  • [39]Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996; 68(5):850-858.
  • [40]Williamson TG, Mok SS, Henry A, Cappai R, Lander AD, Nurcombe V et al.. Secreted glypican binds to the amyloid precursor protein of Alzheimer’s disease (APP) and inhibits APP-induced neurite outgrowth. J Biol Chem. 1996; 271(49):31215-31221.
  • [41]Ho A, Sudhof TC. Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc Natl Acad Sci U S A. 2004; 101(8):2548-2553.
  • [42]Osterfield M, Egelund R, Young LM, Flanagan JG. Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development. 2008; 135(6):1189-1199.
  • [43]Zhou X, Hu X, He W, Tang X, Shi Q, Zhang Z et al.. Interaction between amyloid precursor protein and Nogo receptors regulates amyloid deposition. FASEB J. 2011; 25(9):3146-3156.
  • [44]Shin OH, Rizo J, Sudhof TC. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat Neurosci. 2002; 5(7):649-656.
  • [45]Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, Chapman ER et al.. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science. 2001; 294(5544):1111-1115.
  • [46]Moore JM, Papke JB, Cahill AL, Harkins AB. Stable gene silencing of synaptotagmin I in rat PC12 cells inhibits Ca2 + −evoked release of catecholamine. Am J Physiol Cell Physiol. 2006; 291(2):C270-C281.
  • [47]Roden WH, Papke JB, Moore JM, Cahill AL, Macarthur H, Harkins AB. Stable RNA interference of synaptotagmin I in PC12 cells results in differential regulation of transmitter release. Am J Physiol Cell Physiol. 2007; 293(6):C1742-C1752.
  • [48]Dawkins E, Small DH. Insights into the physiological function of the beta-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem. 2014; 129(5):756-769.
  • [49]De Strooper B, Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci. 2000; 113(Pt 11):1857-1870.
  • [50]Muller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2012; 2(2):a006288.
  • [51]Perreau VM, Orchard S, Adlard PA, Bellingham SA, Cappai R, Ciccotosto GD et al.. A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer’s disease. Proteomics. 2010; 10(12):2377-2395.
  • [52]Ma QH, Futagawa T, Yang WL, Jiang XD, Zeng L, Takeda Y et al.. A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat Cell Biol. 2008; 10(3):283-294.
  • [53]Park JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W et al.. Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition. J Neurosci. 2006; 26(5):1386-1395.
  • [54]Kohli BM, Pflieger D, Mueller LN, Carbonetti G, Aebersold R, Nitsch RM et al.. Interactome of the amyloid precursor protein APP in brain reveals a protein network involved in synaptic vesicle turnover and a close association with Synaptotagmin-1. J Proteome Res. 2012; 11(8):4075-4090.
  • [55]Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al.. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007; 445(7124):168-176.
  • [56]Mittelsteadt T, Seifert G, Alvarez-Baron E, Steinhauser C, Becker AJ, Schoch S. Differential mRNA expression patterns of the synaptotagmin gene family in the rodent brain. J Comp Neurol. 2009; 512(4):514-528.
  • [57]Dean C, Dunning FM, Liu H, Bomba-Warczak E, Martens H, Bharat V et al.. Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen. Mol Biol Cell. 2012; 23(9):1715-1727.
  • [58]Yao J, Kwon SE, Gaffaney JD, Dunning FM, Chapman ER. Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci. 2012; 15(2):243-249.
  • [59]Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM et al.. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron. 2008; 58(1):42-51.
  • [60]Nordstedt C, Caporaso GL, Thyberg J, Gandy SE, Greengard P. Identification of the Alzheimer beta/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells. J Biol Chem. 1993; 268(1):608-612.
  • [61]Wang P, Yang G, Mosier DR, Chang P, Zaidi T, Gong YD et al.. Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-Like protein 2. J Neurosci. 2005; 25(5):1219-1225.
  • [62]Yang G, Gong YD, Gong K, Jiang WL, Kwon E, Wang P et al.. Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2. Neurosci Lett. 2005; 384(1–2):66-71.
  • [63]Lee HW, Park JW, Sandagsuren EU, Kim KB, Yoo JJ, Chung SH. Overexpression of APP stimulates basal and constitutive exocytosis in PC12 cells. Neurosci Lett. 2008; 436(2):245-249.
  • [64]Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D et al.. Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J Neurosci. 2005; 25(29):6755-6764.
  • [65]Del Prete D, Lombino F, Liu X, D’Adamio L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One. 2014; 9(9): Article ID e108576
  • [66]Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013; 126(3):329-352.
  • [67]Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998; 394(6689):192-195.
  • [68]Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P et al.. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999; 286(5440):735-741.
  文献评价指标  
  下载次数:12次 浏览次数:4次