期刊论文详细信息
Proteome Science
Comparative proteomic analysis of transition of saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium
Hui-Ling Chiang1  Bruce A Stanley2  Bennett J Giardina1 
[1] Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA;Section of Research Resources, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
关键词: MALDI;    iTRAQ;    Saccharomyces cerevisiae;    FBPase;    Gluconeogenesis;    Glycolysis;    Catabolite repression;    Catabolite inactivation;   
Others  :  817246
DOI  :  10.1186/1477-5956-10-40
 received in 2011-12-09, accepted in 2012-05-29,  发布年份 2012
PDF
【 摘 要 】

Background

When glucose is added to Saccharomyces cerevisiae grown in non-fermentable carbon sources, genes encoding ribosomal, cell-cycle, and glycolytic proteins are induced. By contrast, genes involved in mitochondrial functions, gluconeogenesis, and the utilization of other carbon sources are repressed. Glucose also causes the activation of the plasma membrane ATPase and the inactivation of gluconeogenic enzymes and mitochondrial enzymes. The goals of this study were to use the iTRAQ-labeling mass spectrometry technique to identify proteins whose relative levels change in response to glucose re-feeding and to correlate changes in protein abundance with changes in transcription and enzymatic activities. We used an experimental condition that causes the degradation of gluconeogenic enzymes when glucose starved cells are replenished with glucose. Identification of these enzymes as being down-regulated by glucose served as an internal control. Furthermore, we sought to identify new proteins that were either up-regulated or down-regulated by glucose.

Results

We have identified new and known proteins that change their relative levels in cells that were transferred from medium containing low glucose to medium containing high glucose. Up-regulated proteins included ribosomal subunits, proteins involved in protein translation, and the plasma membrane ATPase. Down-regulated proteins included small heat shock proteins, mitochondrial proteins, glycolytic enzymes, and gluconeogenic enzymes. Ach1p is involved in acetate metabolism and is also down-regulated by glucose.

Conclusions

We have identified known proteins that have previously been reported to be regulated by glucose as well as new glucose-regulated proteins. Up-regulation of ribosomal proteins and proteins involved in translation may lead to an increase in protein synthesis and in nutrient uptake. Down-regulation of glycolytic enzymes, gluconeogenic enzymes, and mitochondrial proteins may result in changes in glycolysis, gluconeogenesis, and mitochondrial functions. These changes may be beneficial for glucose-starved cells to adapt to the addition of glucose.

【 授权许可】

   
2012 Giardina et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710233745311.pdf 952KB PDF download
Figure 5. 50KB Image download
Figure 4. 27KB Image download
Figure 3. 11KB Image download
Figure 2. 15KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Carlson M: Regulation of glucose utilization in yeast. Curr Opin Genet Dev 1998, 8:560-564.
  • [2]Ludin K, Jiang R, Carlson M: Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1998, 95:6245-6250.
  • [3]Fraenkel DG: The top genes: on the distance from transcript to function in yeast glycolysis. Curr Opin Microbiol 2003, 6:198-201.
  • [4]Gancedo JM: The early steps of glucose signalling in yeast. FEMS Microbiol Rev 2008, 32:673-704.
  • [5]Gancedo JM: Yeast carbon catabolite repression. Microbiol Mol Biol Rev 1998, 62:334-361.
  • [6]Zaman S, Lippman SI, Zhao X, Broach JR: How Saccharomyces responds to nutrients. Annu Rev Genet 2008, 42:27-81.
  • [7]van den Brink J, Akeroyd M, van der Hoeven R, Pronk JT, de Winde JH, Daran-Lapujade P: Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology 2009, 155:1340-1350.
  • [8]Haurie V, Sagliocco F, Boucherie H: Dissecting regulatory networks by means of two-dimensional gel electrophoresis: application to the study of the diauxic shift in the yeast Saccharomyces cerevisiae. Proteomics 2004, 4:364-373.
  • [9]Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MM, Pronk JT, Slijper M, Heck AJ: Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2006, 2:2006 0026.
  • [10]Francesca G, Francesca M, Tania G, Marina B, Maurizio S, Alessandra M: Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Biochim Biophys Acta 2010, 1804:1516-1525.
  • [11]de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M: Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 2007, 153:3864-3878.
  • [12]Usaite R, Wohlschlegel J, Venable JD, Park SK, Nielsen J, Olsson L, Yates Iii JR: Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 2008, 7:266-275.
  • [13]Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, Aebersold R: Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol 2011, 7:464.
  • [14]Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M: Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 2005, 4:1-11.
  • [15]Pham TK, Chong PK, Gan CS, Wright PC: Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J Proteome Res 2006, 5:3411-3419.
  • [16]Klein CJ, Olsson L, Nielsen J: Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. Microbiology 1998, 144(Pt 1):13-24.
  • [17]Yin Z, Wilson S, Hauser NC, Tournu H, Hoheisel JD, Brown AJ: Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol Microbiol 2003, 48:713-724.
  • [18]Warner JR: The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999, 24:437-440.
  • [19]Venema J, Tollervey D: Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999, 33:261-311.
  • [20]Planta RJ, Goncalves PM, Mager WH: Global regulators of ribosome biosynthesis in yeast. Biochem Cell Biol 1995, 73:825-834.
  • [21]Goncalves PM, Griffioen G, Minnee R, Bosma M, Kraakman LS, Mager WH, Planta RJ: Transcription activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p. Nucleic Acids Res 1995, 23:1475-1480.
  • [22]Newcomb LL, Diderich JA, Slattery MG, Heideman W: Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryot Cell 2003, 2:143-149.
  • [23]Goncalves PM, Griffioen G, Bebelman JP, Planta RJ: Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast. Mol Microbiol 1997, 25:483-493.
  • [24]de Groot E, Bebelman JP, Mager WH, Planta RJ: Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae. Microbiology 2000, 146(Pt 2):367-375.
  • [25]Griffioen G, Mager WH, Planta RJ: Nutritional upshift response of ribosomal protein gene transcription in Saccharomyces cerevisiae. FEMS Microbiol Lett 1994, 123:137-144.
  • [26]Sierkstra LN, Sillje HH, Verbakel JM, Verrips CT: The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Eur J Biochem 1993, 214:121-127.
  • [27]Moore PA, Sagliocco FA, Wood RM, Brown AJ: Yeast glycolytic mRNAs are differentially regulated. Mol Cell Biol 1991, 11:5330-5337.
  • [28]Sierkstra LN, Nouwen NP, Verbakel JM, Verrips CT: Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae. Yeast 1993, 9:787-795.
  • [29]Beullens M, Mbonyi K, Geerts L, Gladines D, Detremerie K, Jans AW, Thevelein JM: Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 1988, 172:227-231.
  • [30]Lee FJ, Lin LW, Smith JA: A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae. J Biol Chem 1990, 265:7413-7418.
  • [31]Elbing K, Stahlberg A, Hohmann S, Gustafsson L: Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. Eur J Biochem 2004, 271:4855-4864.
  • [32]Cohen R, Holland JP, Yokoi T, Holland MJ: Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol Cell Biol 1986, 6:2287-2297.
  • [33]Lascaris R, Piwowarski J, van der Spek H, Teixeira de Mattos J, Grivell L, Blom J: Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes. Microbiology 2004, 150:929-934.
  • [34]Gancedo JM: Carbon catabolite repression in yeast. Eur J Biochem 1992, 206:297-313.
  • [35]Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK: Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 1992, 174:4183-4188.
  • [36]Rolland F, Winderickx J, Thevelein JM: Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2002, 2:183-201.
  • [37]Belinchon MM, Gancedo JM: Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways. FEMS Yeast Res 2007, 7:808-818.
  • [38]Scheffler IE, de la Cruz BJ, Prieto S: Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 1998, 30:1175-1193.
  • [39]Yin Z, Hatton L, Brown AJ: Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Mol Microbiol 2000, 35:553-565.
  • [40]Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, Thumm M, Wolf DH: Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 2003, 14:1652-1663.
  • [41]Gancedo JM, Gancedo C: Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae. Eur J Biochem 1979, 101:455-460.
  • [42]Entian KD, Droll L, Mecke D: Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch Microbiol 1983, 134:187-192.
  • [43]Entian KD, Frohlich KU, Mecke D: Regulation of enzymes and isoenzymes of carbohydrate metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1984, 799:181-186.
  • [44]Holzer H: Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol Celular 1989, 21:305-319.
  • [45]Brown CR, Chiang HL: A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009, 2:177-183.
  • [46]Brown CR, Cui DY, Hung GG, Chiang HL: Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. J Biol Chem 2001, 276:48017-48026.
  • [47]Brown CR, Dunton D, Chiang HL: The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2010, 285:1516-1528.
  • [48]Brown CR, Hung GC, Dunton D, Chiang HL: The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway. J Biol Chem 2010, 285:23359-23370.
  • [49]Brown CR, McCann JA, Chiang HL: The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 2000, 150:65-76.
  • [50]Brown CR, McCann JA, Hung GG, Elco CP, Chiang HL: Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway. J Cell Sci 2002, 115:655-666.
  • [51]Brown CR, Wolfe AB, Cui D, Chiang HL: The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008, 283:26116-26127.
  • [52]Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL: Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004, 279:49138-49150.
  • [53]Polakis ES, Bartley W: Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J 1965, 97:284-297.
  • [54]Polakis ES, Bartley W, Meek GA: Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem J 1965, 97:298-302.
  • [55]Satrustegui J, Machado A: The synthesis of yeast matrix mitochondrial enzymes is regulated by different levels of mitochondrial function. Arch Biochem Biophys 1977, 184:355-363.
  • [56]Serrano R: In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 1983, 156:11-14.
  • [57]dos Passos JB, Vanhalewyn M, Brandao RL, Castro IM, Nicoli JR, Thevelein JM: Glucose-induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochim Biophys Acta 1992, 1136:57-67.
  • [58]Brandao RL, Castro IM, Passos JB, Nicoli JR, Thevelein JM: Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum. J Gen Microbiol 1992, 138(Pt 8):1579-1586.
  • [59]Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U: The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J Biol Chem 2004, 279:3956-3979.
  • [60]Chiang HL, Schekman R: Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 1991, 350:313-318.
  • [61]Hoffman M, Chiang HL: Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 1996, 143:1555-1566.
  • [62]Gancedo JM, Mazon MJ, Gancedo C: Inactivation and phosphorylation of yeast fructose 1,6-bisphosphatase. Biochem Soc Trans 1982, 10:326-327.
  • [63]Lamponi S, Galassi C, Tortora P, Guerritore A: Glucose-induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation. FEBS Lett 1987, 216:265-269.
  • [64]Mazon MJ, Gancedo JM, Gancedo C: Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J Biol Chem 1982, 257:1128-1130.
  • [65]Pohlig G, Holzer H: Phosphorylation and inactivation of yeast fructose-1,6-bisphosphatase by cyclic AMP-dependent protein kinase from yeast. J Biol Chem 1985, 260:13818-13823.
  • [66]Rittenhouse J, Moberly L, Marcus F: Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site. J Biol Chem 1987, 262:10114-10119.
  • [67]Toyoda Y, Fujii H, Miwa I, Okuda J, Sy J: Anomeric specificity of glucose effect on cAMP, fructose 1,6-bisphosphatase, and trehalase in yeast. Biochem Biophys Res Commun 1987, 143:212-217.
  • [68]Jiang Y, Davis C, Broach JR: Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 1998, 17:6942-6951.
  • [69]Pham TK, Wright PC: The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res 2008, 7:4766-4774.
  • [70]Fuller HR, Man NT, le Lam T, Shamanin VA, Androphy EJ, Morris GE: Valproate and bone loss: iTRAQ proteomics show that valproate reduces collagens and osteonectin in SMA cells. J Proteome Res 2010, 9:4228-4233.
  • [71]Zhao Z, Stanley BA, Zhang W, Assmann SM: ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 2010, 9:1637-1647.
  • [72]Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et al.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3:1154-1169.
  • [73]Veenstra TD, Conrads TP, Issaq HJ: What to do with "one-hit wonders"? Electrophoresis 2004, 25:1278-1279.
  • [74]Planta RJ, Mager WH: The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 1998, 14:471-477.
  • [75]Verschoor A, Warner JR, Srivastava S, Grassucci RA, Frank J: Three-dimensional structure of the yeast ribosome. Nucleic Acids Res 1998, 26:655-661.
  • [76]Schirmaier F, Philippsen P: Identification of two genes coding for the translation elongation factor EF-1 alpha of S. cerevisiae. EMBO J 1984, 3:3311-3315.
  • [77]Kinzy TG, Ripmaster TL, Woolford JL Jr: Multiple genes encode the translation elongation factor EF-1 gamma in Saccharomyces cerevisiae. Nucleic Acids Res 1994, 22:2703-2707.
  • [78]Thompson GM, Cano VS, Valentini SR: Mapping eIF5A binding sites for Dys1 and Lia1: in vivo evidence for regulation of eIF5A hypusination. FEBS Lett 2003, 555:464-468.
  • [79]Eraso P, Mazon MJ, Portillo F: Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H + −ATPase. Biochim Biophys Acta 2006, 1758:164-170.
  • [80]Garcia-Arranz M, Maldonado AM, Mazon MJ, Portillo F: Transcriptional control of yeast plasma membrane H(+)-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation. J Biol Chem 1994, 269:18076-18082.
  • [81]Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M: Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 1997, 2:12-24.
  • [82]Tzagoloff A: Assembly of the mitochondrial membrane system. II. Synthesis of the mitochondrial adenosine triphosphatase. F1. J Biol Chem 1969, 244:5027-5033.
  • [83]Rodriguez A, De La Cera T, Herrero P, Moreno F: The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 2001, 355:625-631.
  • [84]Bisson LF, Fraenkel DG: Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1983, 80:1730-1734.
  • [85]Aguilera A, Zimmermann FK: Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae. Mol Gen Genet 1986, 202:83-89.
  • [86]Dey NB, Bounelis P, Fritz TA, Bedwell DM, Marchase RB: The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae. J Biol Chem 1994, 269:27143-27148.
  • [87]Fu L, Bounelis P, Dey N, Browne BL, Marchase RB, Bedwell DM: The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae. J Bacteriol 1995, 177:3087-3094.
  • [88]Fernandez E, Moreno F, Rodicio R: The ICL1 gene from Saccharomyces cerevisiae. Eur J Biochem 1992, 204:983-990.
  • [89]Hartig A, Simon MM, Schuster T, Daugherty JR, Yoo HS, Cooper TG: Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res 1992, 20:5677-5686.
  • [90]Saltzgaber-Muller J, Kunapuli SP, Douglas MG: Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex. Isolation of ATP2 coding the F1-ATPase beta subunit. J Biol Chem 1983, 258:11465-11470.
  • [91]Boyer PD: The ATP synthase–a splendid molecular machine. Annu Rev Biochem 1997, 66:717-749.
  • [92]Rak M, Zeng X, Briere JJ, Tzagoloff A: Assembly of F0 in Saccharomyces cerevisiae. Biochim Biophys Acta 2009, 1793:108-116.
  • [93]Stone RL, Matarese V, Magee BB, Magee PT, Bernlohr DA: Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids. Gene 1990, 96:171-176.
  • [94]Praekelt UM, Meacock PA: HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 1990, 223:97-106.
  • [95]Bentley NJ, Fitch IT, Tuite MF: The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast 1992, 8:95-106.
  • [96]Heinisch J: Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol Gen Genet 1986, 202:75-82.
  • [97]Parra KJ, Kane PM: Reversible association between the V1 and V0 domains of yeast vacuolar H + −ATPase is an unconventional glucose-induced effect. Mol Cell Biol 1998, 18:7064-7074.
  • [98]Bond S, Forgac M: The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. J Biol Chem 2008, 283:36513-36521.
  • [99]Ohlmeier S, Hiltunen JK, Bergmann U: Protein phosphorylation in mitochondria –a study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010, 31:2869-2881.
  • [100]Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA: The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 2007, 6:1638-1655.
  • [101]Keller BO, Sui J, Young AB, Whittal RM: Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 2008, 627:71-81.
  • [102]Tang J, Gao M, Deng C, Zhang X: Recent development of multi-dimensional chromatography strategies in proteome research. J Chromatogr B Analyt Technol Biomed Life Sci 2008, 866:123-132.
  • [103]Elias JE, Haas W, Faherty BK, Gygi SP: Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2005, 2:667-675.
  • [104]Tang WH, Shilov IV, Seymour SL: Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 2008, 7:3661-3667.
  • [105]Hulsen T, de Vlieg J, Alkema W: BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 2008, 9:488.
  文献评价指标  
  下载次数:23次 浏览次数:11次