| Particle and Fibre Toxicology | |
| Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus | |
| Ravi Durvasula6  Reza Ali Fazeli-Varzaneh7  Koorosh Aminian5  Reza Jafari3  Yavar Rassi4  Mohammad Hasan Shirazi8  Bagher Yakhchali1  Amir Ahmad Akhavan4  Sara Hajikhani8  Mohammad Hossein Arandian3  Davoud Afshar8  Mohammad Ali Oshaghi4  Naseh Maleki-Ravasan2  | |
| [1] Department Industrial and of Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran;Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran;Isfahan Health Research Station, National Institute of Health Research (NIHR-IHRS), Esfahan, Iran;Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran;Isfahan Province Health Center No1, Isfahan University of Medical Sciences, Isfahan, Iran;Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico;Varzaneh Health Center, Isfahan University of Medical Sciences, Isfahan, Iran;Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran | |
| 关键词: Iran; Zoonotic Cutaneous Leishmaniasis; Paratransgenesis; Microflora; Phlebotomus papatasi; | |
| Others : 1147313 DOI : 10.1186/s13071-014-0517-3 |
|
| received in 2014-06-25, accepted in 2014-11-02, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Identification of the microflora of the sand fly gut and the environmental distribution of these bacteria are important components for paratransgenic control of Leishmania transmission by sand flies.
Methods
Biotic and abiotic bacterial communities of four compartments of a hyper-endemic focus of Zoonotic Cutaneous Leishmaniasis (ZCL) were investigated using 16S ribosomal DNA sequencing and phylogenetic tree construction. These compartments include Phlebotomus papatasi’s gut, skin and intestinal tract of great gerbil Rhombomys opimus, the gerbil nest supplies, and plant food sources of the vectors and reservoirs.
Results
Sequence homology analysis using nine available 16S rDNA data bases revealed 40, 24, 15 and 14 aerobic bacterial species from the vector guts, the gerbil bodies, the gerbil nests, and the plants, respectively. The isolated bacteria belong to wide ranges including aerobic to facultative anaerobic, pathogen to commensals, sand fly oviposition inducers, land to air and ocean habitats, animal and human probiotics, and plant growth-promoting rhizobacteria. Matching data analysis suggested that the adult P. papatasi gut bacteria could be acquired from three routes, adult sugar feeding on the plant saps, adult blood feeding on the animal host, and larval feeding from nest supplies. However, our laboratory experiment showed that none of the bacteria of the reservoir skin was transmitted to female sand fly guts via blood feeding. The microflora of sand fly guts were associated with the sand fly environment in which the predominant bacteria were Microbacterium, Pseudomonas, and Staphylococcus in human dwellings, cattle farms, and rodent colonies, respectively. Staphylococcus aureus was the most common bacterium in sand fly guts. Presence of some sand fly ovipoisition inducers such Bacillus spp. and Staphylococcus saprophyticus support association between gut flora and oviposition induction.
Conclusions
Results of this study showed that Bacillus subtilis and Enterobacter cloacae particularly subsp. dissolvens are circulated among the sand fly guts, the plants, and the sand fly larval breeding places and hence are possible candidates for a paratransgenic approach to reduce Leishmania transmission.
【 授权许可】
2015 Maleki-Ravasan et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150403233709715.pdf | 1797KB | ||
| Figure 4. | 30KB | Image | |
| Figure 3. | 64KB | Image | |
| Figure 2. | 125KB | Image | |
| Figure 1. | 25KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012; 5:276. BioMed Central Full Text
- [2]WHO: Fact sheet n° 375. 2014. updated January 2014 [http://www.who.int/mediacentre/factsheets/fs375/en/]
- [3]Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004; 27:305-318.
- [4]Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol. 2005; 35:1169-1180.
- [5]Hajjaran H, Mohebali M, Mamishi S, Vasigheh F, Oshaghi MA, Naddaf SR, Teimouri A, Edrissian GH, Zarei Z. Molecular identification and polymorphism determination of cutaneous and visceral leishmaniasis agents isolated from human and animal hosts in Iran. Biomed Res Int. 2013; 2013:789326.
- [6]Akhavan AA, Yaghoobi-Ershadi MR, Hasibi F, Jafari R, Abdoli H, Arandian MH, Soleimani H, Zahraei-Ramazani AR, Mohebali M, Hajjaran H. Emergence of cutaneous leishmaniasis due to Leishmania major in a new focus of southern Iran. Iran J Arthropod-Borne Dis. 2007; 1:1-8.
- [7]Boussaa S, Pesson B, Boumezzough A. Phlebotomine sand flies (Diptera: Psychodidae) of Marrakech city, Morocco. Ann Trop Med Parasitol. 2007; 101(8):715-724.
- [8]Rassi Y, Oshaghi MA, Azani SM, Abaie MR, Rafizadeh S, Mohebai M, Mohtarami F, Zeinali MK. Molecular detection of Leishmania infection due to Leishmania major and Leishmania turanica in the vectors and reservoir host in Iran. Vector Borne Zoonotic Dis. 2011; 11(2):145-150.
- [9]Latrofa MS, Annoscia G, Dantas-Torres F, Traversa D, Otranto D. Towards a rapid molecular identification of the common phlebotomine sand flies in the Mediterranean region. Vet Parasitol. 2012; 184(2–4):267-270.
- [10]Bakhshi H, Oshaghi MA, Abai MR, Rassi Y, Akhavan AA, Sheikh Z, Mohtarami F, Saidi Z, Mirzajani H, Anjomruz M. Molecular detection of Leishmania infection in sand flies in border line of Iran-Turkmenistan: restricted and permissive vectors. Exp Parasitol. 2013; 135(2):382-387.
- [11]Yaghoobi-Ershadi MR. Phlebotomine sand flies (Diptera: Psychodidae) in Iran and their role on Leishmania transmission. J Arthropod-Borne Dis. 2012; 6:1-17.
- [12]Yaghoobi-Ershadi MR, Javadian E. Epidemiological study of reservoir hosts in an endemic area of Zoonotic Cutaneous Leishmaniasis in Iran. Bull World Health Org. 1996; 74:587-590.
- [13]Yaghoobi-Ershadi MR, Akhavan AA, Mohebali M. Meriones libycus and Rhombomys opimus (Rodentia:Gerbillidae) are the main reservoir hosts in a new focus of zoonotic cutaneous leishmaniasis in Iran. Trans R Soc Trop Med Hyg. 1996; 90:503-504.
- [14]Dubrovsky YA: Biology of great gerbil–the principal carrier of zoonotic cutaneous leishmaniasis. WHO Traveling Seminar on leishmaniasis control. ex-USSR Ministry of Health; 1979.
- [15]Dennis DT, Gage KL, Gratz N, Poland JD, Tikhomirov E. Plague Manual: Epidemiology, Distribution, Surveillance and Control. World Health Organization, Geneva, Switzerland; 1999.
- [16]Abai MR, Oshaghi MA, Tajedin L, Rassi Y, Akhavan AA. Geographical distribution and ecological features of the great gerbil subspecies in the main zoonotic cutaneous leishmaniasis foci in Iran. Asian Pac J Trop Med. 2010; 3:800-803.
- [17]Kausrud KL, Begon M, Ben Ari T, Viljugrein H, Esper J, Büntgen U, Leirs H, Junge C, Yang B, Yang M, Xu L, Stenseth NC. Modeling the epidemiological history of plague in Central Asia: palaeoclimatic forcing on A disease system over the past millennium. BMC Biol. 2010; 8:112. BioMed Central Full Text
- [18]Akhavan AA, Mirhendi H, Khamesipour A, Alimohammadian MH, Rassi Y, Bates P, Kamhawi S, Valenzuela JG, Arandian MH, Abdoli H, Jalali-zand N, Jafari R, Shareghi N, Ghanei M, Yaghoobi-Ershadi MR. Leishmania species: detection and identification by nested PCR assay from skin samples of rodent reservoirs. Exp Parasitol. 2010; 126:552-556.
- [19]Bakhshi H, Oshaghi MA, Abai MR, Rassi Y, Akhavan AA, Mohebali M, Hajaran H, Mohtarami F, Mirzajani H, Maleki-Ravasan N. MtDNA cytb structure of Rhombomys opimus (Rodentia: Gerbellidae), the main reservoir of cutaneous leishmaniasis in the borderline of Iran-Turkmenistan. J Arthropod-Borne Dis. 2013; 7:173-184.
- [20]Oshaghi MA, Rassi Y, Tajedin L, Abai MR, Akhavan AA, Enayati A, Mohtarami F. Mitochondrial DNA diversity in the populations of great gerbils, Rhombomys opimus, the main reservoir of cutaneous leishmaniasis. Acta Trop. 2011; 119(2–3):165-171.
- [21]Davis S, Begon M, De Bruyn L, Ageyev VS, Klassovskiy NL, Pole SB, Viljugrein H, Stenseth NCHR, Leirs H. Predictive thresholds for plague in Kazakhstan. Science. 2004; 304:736-738.
- [22]Parvizi P, Ready PD. Nested PCRs and sequencing of nuclear ITS-rDNA fragments detects three Leishmania species of gerbils in sand flies from Iranian foci of zoonotic cutaneous leishmaniasis. Trop Med Int Health. 2008; 13:1159-1171.
- [23]Strelkova MV, Eliseev LN, Ponirovsky EN, Dergacheva TI, Annacharyeva DK, Erokhin PI, Evans DA. Mixed leishmanial infections in Rhombomys opimus: a key to the persistence of Leishmania major from one transmission season to the next. Ann Trop Med Parasit. 2001; 95:811-819.
- [24]Dubrovsky YA. Ecological causes of predominance of some mammals as reservoirs of Leishmania tropica major in Turanian deserts. Folia Parasitol (Praha). 1975; 22:163-169.
- [25]Rogovin K, Randall JA, Kolosova I, Moshkin M. Social correlates of stress in adult males of the great gerbil. Rhombomys opimus, in years of high and low population densities. Horm Behav. 2003; 43:132-139.
- [26]Wei L, Wenxuan X, Weikang Y, Cong G, David B, Canjun X, Jie L, Feng X, Honghai Q. Food habits of the great gerbil (rhombomys opimus) in the southern Gurbantunggut desert, Xinjiang, China. Pakistan J Zool. 2012; 44:931-936.
- [27]Towhidi A, Saberifar T, Dirandeh E. Nutritive value of some herbage for dromedary camels in the central arid zone of Iran. Trop Anim Health Prod. 2011; 43(3):617-622.
- [28]Guernaoui S, Garcia D, Gazanion E, Ouhdouch Y, Boumezzough A, Pesson B, Fontenille D, Sereno D. Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (diptera: psychodidae). J Vector Ecol. 2011; 36 Suppl 1:144-147.
- [29]Volf P, Kiewegova A, Nemec A. Bacterial colonization in the gut of phlebotomus duboscqi (diptera psychodidae): transtadial passage and the role of female diet. Folia Parasitol. 2002; 49:73-77.
- [30]O’Neill SL, Hoffmann AA, Werren JH. Influential Passengers. Inherited Microorganisms and Arthropod Reproduction. Oxford Univer In sity Press, New York; 1997.
- [31]Baumann P, Moran NA, Baumann L. Bacteriocyte-Associated Endosymbionts of Insects. The Prokaryotes. Dworkin M, editor. Springer, New York; 2000.
- [32]Bourtzis K, Miller TA. Insect Symbiosis. CRC Press, Boca Raton, FL; 2003.
- [33]Rio RVM, Hu Y, Aksoy S. Strategies of the home team: symbioses exploited for vector-borne disease control. Trends Microbiol. 2004; 12:325-336.
- [34]Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004; 49:71-92.
- [35]Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011; 27:514-522.
- [36]Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009; 23:38-47.
- [37]Visôtto LE, Oliveira MGA, Guedes RNC, Ribon AOB, Good-God PIV. Contribution of gut bacteria to digestion and development of the velvet bean caterpillar, anticarsia gemmatalis. J Insect Physiol. 2009; 55:185-191.
- [38]Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999; 17:279-289.
- [39]Dye CM, Guy W, Elkins DB, Wilkes TJ, Killick-Kendrick R. The life expectancy of phlebotomine sand flies: first field estimates from southern France. Med Vet Entomol. 1987; 1:417-425.
- [40]Gibb PA, Anderson JC, Dye C. Are nulliparous flies light shy? Trans R Soc Trop Med Hyg. 1988; 82:342-343.
- [41]Yuval B, Warburg A, Schlein Y. Leishmaniasis in the Jordan Valley. V. Dispersal characteristics of the sand fly Phlebotomus papatasi. Med Vet Entomol. 1988; 2:391-395.
- [42]Müller GC, Schlein Y. Nectar and honeydew feeding of Phlebotomus papatasi in a focus of Leishmania major in Neot Hakikar oasis. J Vector Ecol. 2004; 29:154-158.
- [43]MacVicker JAK, Moore JS, Molyneux DH, Maroli M. Honeydew sugars in wild caught Italian phlebotomine sand flies (diptera: psychodidae) as detected by high performance liquid chromatography. Bull Entomol Res. 1990; 80:339-344.
- [44]Wallbanks KR, Moore JS, Bennet LR, Soren R, Molyneux DH, Carlin JM, Perez JE. Aphid derived sugars in the neotropical sand fly lutzomyia peruensis. Trop Med Parasitol. 1991; 42:60-62.
- [45]Schlein Y, Jacobson RL. Mortality of Leishmania major in Phlebotomus papatasi caused by plant feeding of the sand flies. Am J Trop Med Hyg. 1994; 50:20-27.
- [46]Schlein Y, Muller G. Assessment of plant tissue feeding by sand flies (diptera: psychodidae) and mosquitoes (diptera: culicidae). J Med Entomol. 1995; 32:882-887.
- [47]Global Insecticide use for Vector-Borne Disease Control. 5th ed. WHO Pesticide Evaluation Scheme (WHOPES), World Health Organization, Geneva, Switzerland; 2011.
- [48]Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011; 27:91-98.
- [49]Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A. 1997; 94:3274-3278.
- [50]Medlock J, Atkins KE, Thomas DN, Aksoy S, Galvani AP. Evaluating paratransgenesis as a potential control strategy for African trypanosomiasis. PLoS Negl Trop Dis. 2013; 7:e2374.
- [51]Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D. Bacteria of the genus asaia stably associate with anopheles stephensi, an asian malarial mosquito vector. Proc Natl Acad Sci U S A. 2007; 104:9047-9051.
- [52]Jin C, Ren X, Rasgon JL. The virulent wolbachia strain wMelPop efficiently establishes somatic infections in the malaria vector anopheles gambiae. Appl Environ Microbiol. 2009; 75:3373-3376.
- [53]Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012; 121:129-134.
- [54]Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Raeisi A, Zarenejad F. Escherichia coli expressing a green fluorescent protein (GFP) in anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis. 2013; 60:17-24.
- [55]Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O. Isolation and identification of culturable bacteria from wild anopheles culicifacies, a first step in a paratransgenesis approach. Parasit Vectors. 2014; 7:419. BioMed Central Full Text
- [56]Akbari S, Oshaghi MA, Hashemi-Aghdam SS, Hajikhani S, Oshaghi G, Shirazi MH. Aerobic bacterial community of american cockroach periplaneta americana, a step toward finding suitable paratransgenesis candidates. J Arthropod-Borne Dis. 2015; 9(1):35-48.
- [57]Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R. Identification of aerobic gut bacteria from the kala azar vector, phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg. 2008; 79:881-886.
- [58]Maleki-Ravasan N, Oshaghi MA, Hajikhani S, Saeidi Z, Akhavan AA, Gerami-Shoar M, Shirazi MH, Yakhchali B, Rassi Y, Afshar D. Aerobic microbial community of insectary population of phlebotomus papatasi. J Arthropod-Borne Dis. 2014; 8:69-81.
- [59]Ren X, Hoiczyk E, Rasgon JL. Viral paratransgenesis in the malaria vector anopheles gambiae. PLoS Pathog. 2008; 4:e1000135.
- [60]Carlson J, Suchman E, Buchatsky L. Densoviruses for control and genetic manipulation of mosquitoes. Adv Virus Res. 2006; 68:361-392.
- [61]Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991; 173:697-703.
- [62]Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol. 2006; 72:5734-5741.
- [63]Greengenes: 16S rDNA data and tools.http://greengenes.lbl.gov/cgi-bin/nph-index.cgi.
- [64]EzTaxon-e: identification of prokaryotes based on 16S ribosomal RNA gene sequences.http://eztaxon-e.ezbiocloud.net.
- [65]NCBI BLAST, search set: 16S rRNA sequences.http://blast.ncbi.nlm.nih.gov/Blast.cgi.
- [66]NCBI BLAST, search set: nucleotide collection.http://blast.ncbi.nlm.nih.gov/Blast.cgi.
- [67]EMBL, ENA: The European nucleotide archive.http://www.ebi.ac.uk/ena.
- [68]DDBJ: DNA data bank of Japan.http://blast.ddbj.nig.ac.jp/?lang=en.
- [69]leBIBI: Bio informatics bacteria identification.http://umr5558-sud-str1.univ-lyon1.fr/lebibi/lebibi.cgi.
- [70]RDP: Ribosomal database project.http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp.
- [71]Blast2Tree: Blast server for the identification of prokaryotes.http://bioinfo.unice.fr/blast/.
- [72]Wang L, Lee F, Tai C, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the bacillus subtilis group. Intl J Syst Evol Microbiol. 2007; 57:1846-1850.
- [73]Moll RM, Romoser WS, Modrakowski MC, Moncayo AC, Lerdthusnee K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (diptera: culicidae) metamorphosis. J Med Entomol. 2001; 38:29-32.
- [74]Mukhopadhyay J, Braig HR, Rowton ED, Ghosh K. Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the old world. PLoS One. 2012; 7:e35748.
- [75]Anand C, Rhonda G, Helene S, Fonseca K, Olsen M. Pig and goat blood as substitutes for sheep blood in blood-supplemented agar media. J Clin Microbiol. 2000; 38:591-594.
- [76]Tresierra-Ayala A, Navas M, Flores J, Perea R, Huanaquiri J, Bendayán M, Fernández H. Growth capacity of thermo tolerant campylobacters in culture media supplemented with pig and cow blood. Braz Arch Biol Technol. 2010; 53:1087-1091.
- [77]Dillon RJ, Kordy EE, Lanee RP. The prevalence of a microbiota in the digestive tract of phlebotomus papatasi. Ann Trop Med Parasitol. 1996; 90:669-673.
- [78]Lehane M. The Biology of Blood-Sucking in Insects. 2nd ed. Cambridge University Press, Cambridge; 2005.
- [79]Sant’Anna MRV, Diaz-Albiter H, Aguiar-Martins K, Al Salem WS, Cavalcante RR, Dillon VM, Bates P, Genta FA, Dillon RJ. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors. 2014; 7:329. BioMed Central Full Text
- [80]Rudolf I, Mendel J, Sikutova S, Svec P, Masarikova J, Novakova D, Bunkova L, Sedlacek I, Hubalek Z. 16S rRNA gene-based identification of cultured bacterial flora from host-seeking ixodes ricinus, dermacentor reticulatus and haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiol (Praha). 2009; 54:419-428.
- [81]Zurek L, Schal C, Watson DW. Diversity and contribution of the intestinal bacterial community to the development of musca domestica (diptera: muscidae) larvae. J Med Entomol. 2000; 37:924-928.
- [82]Diaz-Albiter H, Sant’Anna MR, Genta FA, Dillon RJ. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the phlebotomine sand fly Lutzomyia longipalpis. Biol Chem. 2012; 287(28):23995-24003.
- [83]Telleria EL, Sant’Anna MRV, Alkurbi MO, Pitaluga AN, Dillon TJ, Traub-Csekö YM. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasit Vectors. 2013; 6:12. BioMed Central Full Text
- [84]Radjame K, Srinivasan R, Dhanda V. Oviposition response of phlebotomid sand fly phlebotomus papatasi to soil bacteria isolated from natural breeding habitats. Indian J Exp Biol. 1997; 35:59-61.
- [85]Doudi M, Setorki M, Narimani M. Bacterial superinfection in Zoonotic Cutaneous Leishmaniasis. Med Sci Monit. 2012; 18:356-361.
- [86]Schlein Y, Warburg A. Phytophagy and the feeding cycle of phlebotomus papatasi (diptera: psychodidae) under experimental conditions. J Med Entomol. 1986; 23:11-15.
- [87]Moore JS, Kelly TB, Killick-Kendrick R, Killick-Kendrick M, Wallbanks KR, Molyneux DH. Honeydew sugars in wild-caught phlebotomus ariasi detected by high performance liquid chromatography (HPLC) and gas chromatography (GC). Med Vet Ent. 1987; 1:427-434.
- [88]Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R. The paratransgenic sand fly: a platform for control of Leishmania transmission. Parasit Vectors. 2011; 2011(4):1-9.
- [89]Geetha I, Manonmani AM, Prabakaran G. Bacillus amyloliquefaciens: a mosquitocidal bacterium from mangrove forests of andaman & nicobar islands, india. Acta Trop. 2011; 120:155-159.
- [90]Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R. Difficidin and bacilysin produced by plant associated bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol. 2009; 140:38-44.
- [91]Schallmey M, Singh A, Ward OP. Developments in the use of bacillus species for industrial production. Can J Microbiol. 2004; 50:1-17.
- [92]Cutting SM. Bacillus probiotics. Food Microbiol. 2011; 28:214-220.
- [93]Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected anopheles albimanus block plasmodium vivax sporogonic development. J Med Entomol. 2003; 40:371-374.
- [94]Eappen AG, Smith RC, Jacobs-Lorena M. Enterobacter-activated mosquito immune responses to plasmodium involve activation of SRPN6 in anopheles stephensi. PLoS One. 2013; 8:e62937.
- [95]Husseneder C, Grace JK. Genetically engineered termite gut bacteria (enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl Microbiol Biotechnol. 2005; 68:360-367.
- [96]Watanabe K, Abe K, Sato M. Biological control of an insect pest by gut-colonizing enterobacter cloacae transformed with ice nucleation gene. J Appl Microbiol. 2000; 88:90-97.
- [97]Kuzina LV, Miller ED, Ge B, Miller TA. Transformation of enterobacter gergoviae isolated from pink bollworm (lepidoptera: gelechiidae) gut with bacillus thuringiensis toxin. Curr Microbiol. 2002; 44:1-4.
- [98]Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP. Plant growth-promoting traits in enterobacter cloacae subsp. Dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agric Res. 2014; 3:53-66.
- [99]Xu Y, Wang A, Tao F, Su F, Tang H, Ma C, Xu P. Genome sequence of enterobacter cloacae subsp. Dissolvens SDM, an efficient biomass-utilizing producer of platform chemical 2,3-butanediol. J Bacteriol. 2012; 194:897-898.
- [100]Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N. The communities of endophytic diazotrophic bacteria in cultivated rice (oryza sativa L.). Appl Soil Ecol. 2009; 42:141-149.
- [101]Hardoim PR, Nazir R, Sessitsch A, Elhottová D, Korenblum E, van Overbeek LS, van Elsas JD. The new species enterobacter oryziphilus sp. nov. and enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice. BMC Microbiol. 2013; 13:164. BioMed Central Full Text
- [102]Rodrigues Neto J, Yano T, Beriam LOS, Destéfano SAL, Oliveira VM, Rosato YB. Comparative RFLP-ITS analysis between enterobacter cloacae strains isolated from plants and clinical origin. Arq Inst Biol. 2003; 70:367-372.
- [103]Mangoni ML, Saugar JM, Dellisanti M, Barra D, Simmaco M, Rivas L. Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem. 2005; 280:984-990.
- [104]Anjili C, Langat B, Ngumbi P, Mbati PA, Githure J, Tonui WK. Effects of anti-Leishmania monoclonal antibodies on the development of Leishmania major in Phlebotomus duboscqi (Diptera: Psychodidae). East Afr Med J. 2006; 83:72-78.
- [105]Dutta A, Ghoshal A, Mandal D, Mondal NB, Banerjee S, Sahu NP, Mandal C. Racemoside a, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani. J Med Microbiol. 2007; 56:1196-1204.
- [106]Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L. Human antimicrobial peptide histatin 5 is a cell penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J. 2008; 22:1817-1828.
- [107]Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. Adv Biochem Eng Biotechnol. 2013; 135:157-192.
PDF