期刊论文详细信息
Molecular Neurodegeneration
In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis
David M Holtzman2  John R Cirrito2  Hong Jiang2  Joseph M Castellano2  Gary E Landreth1  Thomas E Mahan2  Philip B Verghese2  Dorothy R Schuler2  Jessica L Restivo2  Jack M Burchett2  Jason D Ulrich2 
[1] Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106USA;Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
关键词: Alzheimer’s disease;    Apolipoprotein E;    Microdialysis;   
Others  :  863271
DOI  :  10.1186/1750-1326-8-13
 received in 2013-01-29, accepted in 2013-04-16,  发布年份 2013
PDF
【 摘 要 】

Background

The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer’s disease. The link between apolipoprotein E (apoE) and Alzheimer’s disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer’s disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes.

Results

We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4.

Conclusions

We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse. Our technique enables assessment of brain apoE dynamics under physiological and pathophysiological conditions and in response to therapeutic interventions designed to affect apoE levels and lipidation within the brain.

【 授权许可】

   
2013 Ulrich et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725033426473.pdf 548KB PDF download
48KB Image download
55KB Image download
60KB Image download
34KB Image download
【 图 表 】

【 参考文献 】
  • [1]Vance JE, Hayashi H: Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochimica Biophysica Acta (BBA) Molecular Cell Biol Lipids 2010, 1801:806-818.
  • [2]Holtzman DM, Herz J, Bu G: Apolipoprotein e and apolipoprotein e receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2:a006312.
  • [3]Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C: Human apoE Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance. Sci Transl Med 2011, 3:89ra57.
  • [4]Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO, Mitani A, Joyner D, Thyssen DH, Bacskai BJ: Apolipoprotein E, Especially Apolipoprotein E4, Increases the Oligomerization of Amyloid β Peptide. J Neurosci 2012, 32:15181-15192.
  • [5]Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A, Knoten A, Jain S, Hirsch-Reinshagen V, Wellington CL, Bales KR: Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 2008, 118:671-682.
  • [6]Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL: Deficiency of ABCA1 Impairs Apolipoprotein E Metabolism in Brain. J Biol Chem 2004, 279:41197-41207.
  • [7]Kim J, Jiang H, Park S, Eltorai AEM, Stewart FR, Yoon H, Basak JM, Finn MB, Holtzman DM: Haploinsufficiency of Human APOE Reduces Amyloid Deposition in a Mouse Model of Amyloid-β Amyloidosis. J Neurosci 2011, 31:18007-18012.
  • [8]Cramer PE, Cirrito JR, Wesson DW, Lee CYD, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ: ApoE-Directed Therapeutics Rapidly Clear β-Amyloid and Reverse Deficits in AD Mouse Models. Science 2012, 335:1503-1506.
  • [9]Kim J, Eltorai AEM, Jiang H, Liao F, Verghese PB, Kim J, Stewart FR, Basak JM, Holtzman DM: Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J Exp Med 2012, 209:2149-2156.
  • [10]Chefer VI, Thompson AC, Zapata A, Shippenberg TS: Overview of Brain Microdialysis. Curr Protoc Neurosci 2009, 47:7.1.1-7.1.28.
  • [11]Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM: Synaptic Activity Regulates Interstitial Fluid Amyloid-β Levels In Vivo. Neuron 2005, 48:913-922.
  • [12]Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee J-M, Holtzman DM: Neuronal activity regulates the regional vulnerability to amyloid-[beta] deposition. Nat Neurosci 2011, 14:750-756.
  • [13]Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM: Disruption of the Sleep-Wake Cycle and Diurnal Fluctuation of β-Amyloid in Mice with Alzheimer’s Disease Pathology. Sci Transl Med 2012, 4:150ra122.
  • [14]Cirrito JR, May PC, O'Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM: In Vivo Assessment of Brain Interstitial Fluid with Microdialysis Reveals Plaque-Associated Changes in Amyloid-β Metabolism and Half-Life. J Neurosci 2003, 23:8844-8853.
  • [15]Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R: Novel microdialysis method to assess neuropeptides and large molecules in free-moving mouse. Neuroscience 2011, 186:110-119.
  • [16]Verges DK, Restivo JL, Goebel WD, Holtzman DM, Cirrito JR: Opposing Synaptic Regulation of Amyloid-β Metabolism by NMDA Receptors In Vivo. J Neurosci 2011, 31:11328-11337.
  • [17]Mandrekar-Colucci S, Karlo JC, Landreth GE: Mechanisms Underlying the Rapid Peroxisome Proliferator-Activated Receptor-γ-Mediated Amyloid Clearance and Reversal of Cognitive Deficits in a Murine Model of Alzheimer's Disease. J Neurosci 2012, 32:10117-10128.
  • [18]Fan J, Stukas S, Wong C, Chan J, May S, DeValle N, Hirsch-Reinshagen V, Wilkinson A, Oda MN, Wellington CL: An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia. J Lipid Res 2011, 52:1605-1616.
  • [19]DeMattos RB, Brendza RP, Heuser JE, Kierson M, Cirrito JR, Fryer J, Sullivan PM, Fagan AM, Han X, Holtzman DM: Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 2001, 39:415-425.
  • [20]Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM: Deletion of Abca1 Increases Aβ Deposition in the PDAPP Transgenic Mouse Model of Alzheimer Disease. J Biol Chem 2005, 280:43236-43242.
  • [21]Fagan AM, Holtzman DM, Munson G, Mathur T, Schneider D, Chang LK, Getz GS, Reardon CA, Lukens J, Shah JA, LaDu MJ: Unique Lipoproteins Secreted by Primary Astrocytes From Wild Type, apoE (−/−), and Human apoE Transgenic Mice. J Biol Chem 1999, 274:30001-30007.
  • [22]Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM: Human APOE Isoform-Dependent Effects on Brain β-Amyloid Levels in PDAPP Transgenic Mice. J Neurosci 2009, 29:6771-6779.
  • [23]Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, Xu L, Aschmies S, Kirksey Y, Hu Y: Impact of Apolipoprotein E (ApoE) Polymorphism on Brain ApoE Levels. J Neurosci 2008, 28:11445-11453.
  • [24]Liu CC, Kanekiyo T, Xu H, Bu G: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013, 9:106-118.
  • [25]Rosenbaum AI, Maxfield FR: Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 2011, 116:789-795.
  • [26]Sullivan PM, Mace BE, Maeda N, Schmechel DE: Marked regional differences of brain human apolipoprotein e expression in targeted replacement mice. Neuroscience 2004, 124:725-733.
  • [27]Fagan AM, Younkin LH, Morris JC, Fryer JD, Cole TG, Younkin SG, Holtzman DM: Differences in the Abeta40/Abeta42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann Neurol 2000, 48:201-210.
  文献评价指标  
  下载次数:47次 浏览次数:12次