期刊论文详细信息
Proteome Science
Azacytidine induces necrosis of multiple myeloma cells through oxidative stress
Qingtao Wang1  Haiteng Deng2  Chongdong Liu1  Renhua Xu1  Haiping Tang2  Enbing Tian1 
[1] Beijing Chaoyang Hospital affiliated Capital Medical University, Beijing, China;School of Life Sciences, Tsinghua University, Beijing, China
关键词: Myeloma cells;    Oxidative stress;    Heat shock proteins;    Proteomics;    Cell-bound albumin;    Necrosis;   
Others  :  816913
DOI  :  10.1186/1477-5956-11-24
 received in 2012-11-13, accepted in 2013-06-07,  发布年份 2013
PDF
【 摘 要 】

Azacytidine is an inhibitor of DNA methyltransferase and is known to be an anti-leukemic agent to induce cancer cell apoptosis. In the present study, multiple myeloma cells were treated with azacytidine at clinically relevant concentrations to induce necrosis through oxidative stress. Necrotic myeloma cells exhibit unique characteristics, including enrichment of the cell-bound albumin and overexpression of endoplasmic reticulum (ER)- and mitochondrial-specific chaperones, which were not observed in other necrotic cells, including HUH-7, A2780, A549, and Hoc1a. Proteomic analysis shows that HSP60 is the most abundant up-regulated mitochondrial specific chaperone, and azacytidine-induced overexpression of HSP60 is confirmed by western blot analysis. In contrast, expression levels of cytosolic chaperones such as HSP90 and HSP71 were down-regulated in azacytidine-treated myeloma cells, concomitant with an increase of these chaperones in the cell culture medium, suggesting that mitochondrial chaperones and cytosolic chaperones behave differently in necrotic myeloma cells; ER- and mitochondrial-chaperones being retained, and cytosolic chaperones being released into the cell culture medium through the ruptured cell membrane. Our data suggest that HSP60 is potentially a new target for multiple myeloma chemotherapy.

【 授权许可】

   
2013 Tian et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710212630354.pdf 2197KB PDF download
Figure 6. 569KB Image download
Figure 5. 56KB Image download
Figure 4. 43KB Image download
Figure 3. 57KB Image download
Figure 2. 36KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Palumbo A, Anderson K: Multiple Myeloma. N Eng J Med 2011, 364:1046-1060.
  • [2]Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman J, Osieka R: DNA methylation changes in multiple myeloma. Leukemia 2004, 18:1687-1692.
  • [3]Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A, Davies FE, Ross FM, Morgan GJ: Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 2011, 117:553-562.
  • [4]Salhia B, Baker A, Ahmann G, Auclair D, Fonseca R, Carpten J: DNA methylation analysis determines the high frequency of genic hypomethylation and low frequency of hypermethylation events in plasma cell tumors. Cancer Res 2010, 70:6934-6944.
  • [5]Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009, 10:223-232.
  • [6]Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach C, Larson RA: Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006, 24:3895-3903.
  • [7]Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002, 20:2429-2440.
  • [8]Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S: 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 2007, 6:17-18. BioMed Central Full Text
  • [9]Chen G, Wang Y, Huang H, Lin F, Wu D, Sun A, Chang H, Feng Y: Combination of DNA methylation inhibitor 5‒azacytidine and arsenic trioxide has synergistic activity in myeloma. Eur J Haematol 2009, 82:176-183.
  • [10]Khong T, Sharkey J, Spencer A: The effect of azacitidine on interleukin-6 signaling and nuclear factor-κB activation and its in vitro and in vivo activity against multiple myeloma. Haematologica 2008, 93:860-869.
  • [11]Zhang Y, Wang Z, Zhang J, Farmer B, Lim SH: Semenogelin I expression in myeloma cells can be upregulated pharmacologically. Leuk Res 2008, 32:1889-1894.
  • [12]Edinger AL, Thompson CB: Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004, 16:663-669.
  • [13]Zong WX, Thompson CB: Necrotic death as a cell fate. Genes Dev 2006, 20:1-15.
  • [14]Golstein P, Kroemer G: Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007, 32:37-43.
  • [15]Han J, Zhong CQ, Zhang DW: Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 2011, 12:1143-1149.
  • [16]Wang Z, Jiang H, Chen S, Du F, Wang X: The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012, 148:228-243.
  • [17]Rock KL, Kono H: The inflammatory response to cell death. Annu Rev Pathol 2008, 3:99-126.
  • [18]Jäättelä M, Tschopp J: Caspase-independent cell death in T lymphocytes. Nat Immunol 2003, 4:416-423.
  • [19]Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC: Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Sci STKE 2009, 106:20388-20393.
  • [20]Festjens N, Vanden Berghe T, Vandenabeele P: Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2006, 1757:1371-1387.
  • [21]Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol 2000, 12:1539-1546.
  • [22]Basu S, Srivastava PK: Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell stress & chaperons 2000, 5:443-451.
  • [23]Lipscomb MF, Masten BJ: Dendritic cells: immune regulators in health and disease. Physiol Rev 2002, 82:97-130.
  • [24]Robert J: Evolution of heat shock protein and immunity. Dev Comp Immunol 2003, 27:449-464.
  • [25]Mark G, Zihai L: Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. J Hematol Oncol 2009, 30:5.
  • [26]Tsan MF, Gao B: Heat shock protein and innate immunity. Cell Mol Immunol 2004, 1:274-279.
  • [27]Beg AA: Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 2002, 23:509-512.
  • [28]Calderwood SK, Murshid A, Gong J: Heat shock proteins: conditional mediators of inflammation in tumor immunity. Front Immunol 2012, 3:75.
  • [29]Nakamura M, Esumi H, Jin L, Mitsuya H, Hata H: Induction of Necrosis in Human Myeloma Cells by Kigamicin. Anticancer Res 2008, 28:37-44.
  • [30]Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT, Wang HG, Dalton WS, Hazlehurst LA: HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Mol Cancer Ther 2009, 8:2441-2451.
  • [31]Chandra J: Oxidative stress by targeted agents promotes cytotoxicity in hematologic malignancies. Antioxid Redox Signal 2009, 11:1123-1137.
  • [32]Gao S, Mobley A, Miller C, Boklan J, Chandra J: Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk Res 2008, 32:771-780.
  • [33]Nadasi E, Clark JS, Szanyi I, Varjas T, Ember I, Baliga R, Arany I: Epigenetic Modifiers Exacerbate Oxidative Stress in Renal Proximal Tubule Cells. Anticancer Res 2009, 29:2295-2299.
  • [34]Kregel KC, Zhang HJ: An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007, 292:R18-R36.
  • [35]Patten DA, Germain M, Kelly MA, Slack RS: Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis 2010, 20:357-367.
  • [36]Sitia R, Molteni SN: Stress, protein (mis) folding, and signaling: the redox connection. Sci STKE 2004, 239:27.
  • [37]Mazars A, Lallemand F, Prunier C, Marais J, Ferrand N, Pessah M, Cherqui G, Atfi A: Evidence for a role of the JNK cascade in Smad7-mediated apoptosis. J Biol Chem 2001, 276:36797-36803.
  • [38]Zhao Y, Glesne D, Huberman E: A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci 2003, 100:2426-2431.
  • [39]Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA: Differentiation of In Vitro–Modified Human Peripheral Blood Monocytes Into Hepatocyte–like and Pancreatic Islet-like Cells. Gastroenterology 2005, 128:1774-1786.
  • [40]Yan L, Han Y, Wang J, Liu J, Hong L, Fan D: Peripheral blood monocytes from patients with HBV related decompensated liver cirrhosis can differentiate into functional hepatocytes. Am J Hematol 2007, 82:949-954.
  • [41]Ahn SM, Byun K, Cho K, Kim JY, Yoo JS, Kim D, Paek SH, Kim SU, Simpson RJ, Lee B: Human microglial cells synthesize albumin in brain. PLoS One 2008, 3:28-29.
  • [42]Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona D, Barbieri G, David S, Farina F, Zummo G, De Macario GC, Macario A, Cappello F: The Odyssey of Hsp60 from Tumor Cells to Other Destinations Includes Plasma Membrane-Associated Stages and Golgi and Exosomal Protein-Trafficking Modalities. PLoS One 2012, 7:e42008.
  • [43]Dziarski R: Cell-bound albumin is the 70-kDa peptidoglycan-, lipopolysaccharide-, and lipoteichoic acid-binding protein on lymphocytes and macrophages. J Biol Chem 1994, 269:20431-20436.
  • [44]Koll H, Guiard B, Rassow J, Ostermann J, Horwich A, Neupert W, Hartl FU: Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 1992, 68:1163-1175.
  • [45]Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, Marco CD, Allan Butterfield D, Stella AMG: In vivo induction of heat shock proteins in the substantia nigra following L‒DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem 2007, 101:709-717.
  • [46]Rossi MR, Somji S, Garrett SH, Sens MA, Nath J, Sens DA: Expression of hsp 27, hsp 60, hsc 70, and hsp 70 stress response genes in cultured human urothelial cells (UROtsa) exposed to lethal and sublethal concentrations of sodium arsenite. Environ Health Perspect 2002, 110:1225.
  • [47]Chandra D, Choy G, Tang DG: Cytosolic Accumulation of HSP60 during Apoptosis with or without Apparent Mitochondrial Release. J Biol Chem 2007, 282:31289-31301.
  • [48]Wilkinson B, Gilbert HF: Protein disulfide isomerase. Biochimica et Biophysica Acta (BBA)-Proteins. Proteomics 2004, 1699:35-44.
  • [49]Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ: Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 2006, 31:455-464.
  • [50]Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE: Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2010, 24:665-683.
  • [51]Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A: Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 2008, 180:4299-4307.
  • [52]Asea A: Release of Heat Shock Proteins: Passive Versus Active Release Mechanisms. In Heat shock proteins: potent mediators of inflammation and immunity. Edited by Alexzander A, Asea A, Antonio De M. Dordrecht: Springer Press; 2007:3-20.
  • [53]Asea A: Mechanisms of HSP72 release. J Biosci 2007, 32:579-584.
  文献评价指标  
  下载次数:37次 浏览次数:19次