| Virology Journal | |
| Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group | |
| Andrew M Kropinski3  Erika J Lingohr1  Andre Villegas1  Yi-Min She5  Mansel W Griffiths2  Tarek F El-Arabi4  | |
| [1] Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, N1G 3W4, Canada;Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada;Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada;Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada;Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada | |
| 关键词: tRNAs; Proteome; Genome; Host range; Myoviridae; Bacteriophage; Bacillus cereus; | |
| Others : 1151836 DOI : 10.1186/1743-422X-10-48 |
|
| received in 2012-08-13, accepted in 2013-01-08, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail.
Results
Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1.
Conclusions
Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G.
【 授权许可】
2013 El-Arabi et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150406110433150.pdf | 1596KB | ||
| Figure 5. | 67KB | Image | |
| Figure 4. | 135KB | Image | |
| Figure 3. | 48KB | Image | |
| Figure 2. | 37KB | Image | |
| Figure 1. | 142KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Griffiths MW: Bacillus cereus and Other Bacillus spp. In Pathogens and Toxins in Foods: Challenges and Interventions. Edited by Juneja VK, Sofos JN. Washignton, DC: ASM Press; 2010.
- [2]Garber KB: Anthrax (Bacillus anthracis). KGaA: Molecular Biology of. Wiley-VCH Verlag GmbH & Co; 2006.
- [3]Bandara N, Jo J, Ryu S, Kim KP: Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol 2012, 31(1):9-16.
- [4]Bottone EJ: Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 2010, 23:382-398.
- [5]Shin H, Bandara N, Shin E, Ryu S, Kim KP: Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Res Microbiol 2011, 162(8):791-797.
- [6]Stenfors L, Mayr R, Scherer S, Granum P: Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 2002, 215:47-51.
- [7]Barfod K, Poulsen S, Hammer M, Larsen S: Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC Microbiol 2010, 10:233. BioMed Central Full Text
- [8]Ankolekar C, Rahmati T, Labbé RG: Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol 2009, 128:460-466.
- [9]McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC: Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia. Canada Appl Environ Microbiol 2008, 74:7451-7453.
- [10]Zhou G, Liu H, He J, Yuan Y, Yuan Z: The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk. Int J Food Microbiol 2008, 121:195-200.
- [11]Zhou G, Zheng D, Dou L, Cai Q, Yuan Z: Occurrence of psychrotolerant Bacillus cereus group strains in ice creams. Int J Food Microbiol 2010, 137:143-146.
- [12]Ackermann HW, Abedon ST 2000. http://www.mansfield.ohio-state.edu/~sabedon/names/2000/ webcite
- [13]Ackermann HW, Azizbekyan RR, Emadi Konjin HP, Lecadet MM, Seldin L, Yu MX: New Bacillus bacteriophage species. Arch Virol 1994, 135:333-344.
- [14]Ackermann HW: Phage Classification and Characterization. Methods Mol Biol 2009, 501:127-140.
- [15]Allan BJ, Davies P, Carstens EB, Kropinski AM: Characterization of the genome of Pseudomonas aeruginosa bacteriophage φPLS27 with particular reference to the ends of the DNA. J Virol 1989, 63:1587-1594.
- [16]Lavigne R, Darius Pl, Summer E, Seto D, Mahadevan P, Nilsson A, Ackermann H, Kropinski A: Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009, 9:224. BioMed Central Full Text
- [17]Perkus ME, Shub DA: Mapping the genes in the terminal redundancy of bacteriophage SPO1 with restriction endonucleases. J Virol 1985, 56:40-48.
- [18]Klumpp J, Lavigne R, Loessner M, Ackermann HW: The SPO1-related bacteriophages. Arch Virol 2010, 155:1547-1561.
- [19]Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML: The Genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 2009, 388:48-70.
- [20]Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S: Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiol Lett 2008, 278:200-206.
- [21]Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S: In silico and in vivo evaluation of bacteriophage φEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 2008, 74:4149-4163.
- [22]Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ: Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 2005, 43:301-312.
- [23]Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ: The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of Gram-positive bacteria. J Bacteriol 2008, 190:5753-5765.
- [24]Kwan T, Liu J, DuBow M, Gros P, Pelletier J: The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 2005, 102:5174-5179.
- [25]Lee J, Shin H, Son B, Ryu S: Complete genome sequence of Bacillus cereus bacteriophage BCP78. J Virol 2012, 86:637-638.
- [26]Ruhfel RE, Robillard NJ, Thorne CB: Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis. J Bacteriol 1984, 157:708-711.
- [27]Mccloy EW: Lysogenicity and immunity to Bacillus phage. W J Gen Microbiol 1958, 18:198-220.
- [28]Schuch R, Pelzek AJ, Kan S, Fischetti VA: Prevalence of Bacillus anthracis-like organisms and bacteriophages in the intestinal tract of the earthworm Eisenia fetida. Appl Environ Microbiol 2010, 76:2286-2294.
- [29]Kong M, Kim M, Ryu S: Complete genome sequence of Bacillus cereus bacteriophage PBC1. J Virol 2012, 86(11):6379-6380.
- [30]Schuch R, Fischetti VA: The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009, 4:e6532.
- [31]Thorne CB: Transduction in Bacillus cereus and Bacillus anthracis. Microbiol Mol Biol Rev 1968, 32:358-361.
- [32]Thorne CB, Holt SC: Cold lability of Bacillus cereus bacteriophage CP-51. J Virol 1974, 14:1008-1012.
- [33]Yelton DB, Thorne CB: Transduction in Bacillus cereus by each of two bacteriophages. J Bacteriol 1970, 102:573-579.
- [34]Ahmed R, Sankar-Mistry P, Jackson S, Ackermann HW, Kasatiya SS: Bacillus cereus phage typing as an epidemiological tool in outbreaks of food poisoning. J Clin Microbiol 1995, 33:636-640.
- [35]Lee W, Billington C, Hudson JA, Heinemann JA: Isolation and characterization of phages infecting Bacillus cereus. Microbiol: Lett. Appl; 2011.
- [36]Loessner MJ, Maier SK, Daubek-Puza H, Wendlinger G, Scherer S: Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. J Bacteriol 1997, 179:2845-2851.
- [37]Abbasifar RAM, Kropinski PM, Sabour HWA, Lingohr EJ, Griffiths MW: Complete Genome Sequence of Cronobacter sakazakii Bacteriophage vB_CsaM_GAP161. J Virol 2012, 86:13806-13807.
- [38]Liu J, Mushegian A: Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. J Bacteriol 2004, 186:4369-4375.
- [39]Ishii T, Yoshida K, Terai G, Fujita Y, Nakai K: DBTBS: a database of Bacillus subtilis promoters and transcription factors. Nucl Acids Res 2001, 29:278-280.
- [40]Söding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucl Acids Res 33:W244-W248.
- [41]Hanlon GW: Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 2007, 30:118-128.
- [42]Kutter E, Sulakvelidze A: Bacteriophages: biology and applications. Boca Raton, FL: CRC Press; 2005.
- [43]Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublié S: tRNAHis guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proc Natl Acad Sci USA 2010, 107:20305-20310.
- [44]Tåquist H, Cui Y, Ardell DH: TFAM 1.0: an online tRNA function classifier. Nucl. Acids Res 2007, 35:W350-W353.
- [45]Sarkar T, Petrov AS, Vitko JR, Santai CT, Harvey SC, Mukerji I, Hud NV: Integration host factor (IHF) dictates the structure of polyamine-DNA condensates: implications for the role of IHF in the compaction of bacterial Chromatin. Biochemistry 2009, 48:667-675.
- [46]Schmitz JE, Schuch R, Fischetti VA: Identifying active phage lysins through functional viral metagenomics. Appl Environ Microbiol 2010, 76:7181-7187.
- [47]Kropinski AM, Borodovsky M, Carver TJ, Cerdeño-Tárraga AM, Darling A, Lomsadze A, Mahadevan P, Stothard P, Seto D, Domselaar G, Wishart DS: In silico identification of genes in bacteriophage DNA. Methods Mol Biol 2009, 502:57-89.
- [48]Zafar N, Mazumder R, Seto D: CoreGenes: A computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinforma 2002, 3:12. BioMed Central Full Text
- [49]Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A: Genomics of staphylococcal Twort-like phages–potential therapeutics of the post-antibiotic era. Adv Virus Res 2012, 83:143-216.
- [50]Camp AH, Losick R: A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev 2009, 23:1014-1024.
- [51]Sharpe ME, Errington J: Postseptational chromosome partitioning in bacteria. Proc Natl Acad Sci USA 1995, 92:8630-8634.
- [52]Wu LJ, Errington J: Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Molec Microbiol 1998, 27:777-786.
- [53]Anany HE: Biocontrol of FoodBorne Bacterial Pathogens Using Immobilized Bacteriophages. University of Guelph Libraries, Ph.D. University of Guelph; 2010.
- [54]Abedon S, Hyman P, Thomas C: Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 2003, 69:7499-7506.
- [55]Lingohr E, Frost S, Johnson RP: Determination of bacteriophage genome size by pulsed-field gel electrophoresis. Methods Mol Biol 2009, 502:19-25.
- [56]Koski L, Gray M, Lang BF, Burger G: AutoFACT: An automatic functional annotation and classification tool. BMC Bioinforma 2005, 6:151. BioMed Central Full Text
- [57]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucl Acids Res 2010, 38:D211-D222.
- [58]Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl Acids Res 2004, 32:11-16.
- [59]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 1997, 25:955-964.
- [60]Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL: Prediction of transcription terminators in bacterial genomes. J Mol Biol 2000, 301:27-33.
- [61]Gautheret D, Lambert A: Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 2001, 313:1003-1011.
- [62]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 2003, 31:3406-3415.
- [63]Juretić D, Zoranić L, Zucić D: Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comput Sci 2002, 42:620-632.
- [64]Käll L, Krogh A, Sonnhammer ELL: Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucl Acids 2007, 35:429-432.
- [65]Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
- [66]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
- [67]Stothard P, Wishart DS: Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21:537-539.
PDF