期刊论文详细信息
Molecular Cytogenetics
Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting
Vladimir A. Trifonov3  Alexander S. Graphodatsky1  Nadezhda V. Vorobieva1  Marina A. Korentovich2  Elena A. Interesova4  Natalia A. Lemskaya3  Olga L. Gladkikh3  Violetta R. Beklemisheva3  Anastasia I. Kulemzina3  Natalya A. Serdyukova3  Larisa S. Biltueva3  Svetlana A. Romanenko1 
[1] Novosibirsk State University, Novosibirsk, Russia;Federal State Budgetary Scientific Institution “State Scientific-and-Production Centre for Fisheries (Gosrybcenter)”, Tyumen, Russia;Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia;Tomsk State University, Tomsk, Russia
关键词: Microdissection;    FISH;    rRNA;    Telomeric repeat;    Satellite DNA;    Banding;    Fish cell line;    Acipenseriformes;   
Others  :  1233886
DOI  :  10.1186/s13039-015-0194-8
 received in 2015-09-04, accepted in 2015-11-07,  发布年份 2015
PDF
【 摘 要 】

Background

Acipenseriformes take a basal position among Actinopteri and demonstrate a striking ploidy variation among species. The sterlet (Acipenser ruthenus, Linnaeus, 1758; ARUT) is a diploid 120-chromosomal sturgeon distributed in Eurasian rivers from Danube to Enisey. Despite a high commercial value and a rapid population decline in the wild, many genomic characteristics of sterlet (as well as many other sturgeon species) have not been studied.

Results

Cell lines from different tissues of 12 sterlet specimens from Siberian populations were established following an optimized protocol. Conventional cytogenetic studies supplemented with molecular cytogenetic investigations on obtained fibroblast cell lines allowed a detailed description of sterlet karyotype and a precise localization of 18S/28S and 5S ribosomal clusters. Localization of sturgeon specific HindIII repetitive elements revealed an increased concentration in the pericentromeric region of the acrocentric ARUT14, while the total sterlet repetitive DNA fraction (C 0 t30) produced bright signals on subtelomeric segments of small chromosomal elements. Chromosome and region specific probes ARUT1p, 5, 6, 7, 8 as well as 14 anonymous small sized chromosomes (probes A-N) generated by microdissection were applied in chromosome painting experiments. According to hybridization patterns all painting probes were classified into two major groups: the first group (ARUT5, 6, 8 as well as microchromosome specific probes C, E, F, G, H, and I) painted only a single region each on sterlet metaphases, while probes of the second group (ARUT1p, 7 as well as microchromosome derived probes A, B, D, J, K, M, and N) marked two genomic segments each on different chromosomes. Similar results were obtained on male and female metaphases.

Conclusions

The sterlet genome represents a complex mosaic structure and consists of diploid and tetraploid chromosome segments. This may be regarded as a transition stage from paleotetraploid (functional diploid) to diploid genome condition. Molecular cytogenetic and genomic studies of other 120- and 240-chromosomal sturgeons are needed to reconstruct genome evolution of this vertebrate group.

【 授权许可】

   
2015 Romanenko et al.

【 预 览 】
附件列表
Files Size Format View
20151123090207723.pdf 2227KB PDF download
Fig. 6. 52KB Image download
Fig. 5. 47KB Image download
Fig. 4. 32KB Image download
Fig. 3. 60KB Image download
Fig. 2. 74KB Image download
Fig. 1. 146KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Birstein VJ, DeSalle R. Molecular phylogeny of Acipenserinae. Mol Phylogenet Evol. 1998; 9(1):141-55.
  • [2]Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics. 2001; 158(3):1203-15.
  • [3]Sallan LC. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol Rev. 2014; 89(4):950-71.
  • [4]Birstein VJ, Vasiliev VP. Tetraploid-octoploid relationships and karyological evolution in the order acipenseriformes (Pisces) - karyotypes, nucleoli, and nucleolus-organizer regions in 4 Acipenserid species. Genetica. 1987; 72(1):3-12.
  • [5]Acipenser ruthenus. http://sveb.unife.it/it/ricerca-1/laboratori/geneweb/acipenser-ruthenus. Accessed 13 Nov 2015.
  • [6]Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TI, Ware K et al.. Evidence of hexaploid karyotype in shortnose sturgeon. Genome. 2008; 51(2):113-9.
  • [7]Fontana F, Lanfredi M, Chicca M, Aiello V, Rossi R. Localization of the repetitive telomeric sequence (TTAGGG)n in four sturgeon species. Chromosome Res. 1998; 6(4):303-6.
  • [8]Fontana F, Lanfredi M, Congiu L, Leis M, Chicca M, Rossi R. Chromosomal mapping of 18S-28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome. 2003; 46(3):473-7.
  • [9]Flynn SR, Matsuoka M, Reith M, Martin-Robichaud DJ, Benfey TJ. Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Lesuere. Aquaculture. 2006; 253(1–4):721-7.
  • [10]Saber MH, Hallajian A. Study of sex determination system in ship sturgeon, Acipenser nudiventris using meiotic gynogenesis. Aquac Int. 2014; 22(1):273-9.
  • [11]Shelton WL, Mims SD. Evidence for female heterogametic sex determination in paddlefish Polyodon spathula based on gynogenesis. Aquaculture. 2012; 356:116-8.
  • [12]Fontana F, Lanfredi M, Rossi R, Bronzi P, Arlati G. Established cell lines from three sturgeon species. Sturgeon Q. 1995; 3(4):6-7.
  • [13]Havelka M, Kaspar V, Hulak M, Flajshans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 2011; 60(2):93-103.
  • [14]Ráb P, Arefjev VA. M. R. C-banded karyotype of the sterlet, Acipenser ruthenus, from the Danube River. Sturgeon Q. 1996; 4(4):10-2.
  • [15]Fontana F. Chromosomal nucleolar organizer regions in 4 sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome. 1994; 37(5):888-92.
  • [16]Fontana F, Lanfredi M, Chicca M, Congiu L, Tagliavini J, Rossi R. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes Acipenseriformes). Genome. 1999; 42(5):1008-12.
  • [17]Lanfredi M, Congiu L, Garrido-Ramos MA, de la Herran R, Leis M, Chicca M et al.. Chromosomal location and evolution of a satellite DNA family in seven sturgeon species. Chromosome Res. 2001; 9(1):47-52.
  • [18]Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet. 2011; 4:22. BioMed Central Full Text
  • [19]Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M. Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species. Cytogenet Genome Res. 2003; 103(1–2):173-84.
  • [20]Pokorna M, Giovannotti M, Kratochvil L, Kasai F, Trifonov VA, O’Brien PCM et al.. Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma. 2011; 120(5):455-68.
  • [21]Cioffi MD, Sanchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V et al.. Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species. Genetica. 2011; 139(8):1065-72.
  • [22]Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J et al.. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013; 499(7458):346-U122.
  • [23]Li MF, Marrayatt V, Annand C, Odense P. Fish cell-culture - 2 newly developed cell-lines from Atlantic sturgeon (Acipenser-Oxyrhynchus) and guppy (Poecilia-Reticulata). Can J Zool. 1985; 63(12):2867-74.
  • [24]Fontana F, Rossi R, Lanfredi M, Arlati G, Bronzi P. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia. 1997; 50(1):91-5.
  • [25]Hedrick RP, Mcdowell TS, Rosemark R, Aronstein D, Lannan CN. 2 cell-lines from white sturgeon. T Am Fish Soc. 1991; 120(4):528-34.
  • [26]Wang G, LaPatra S, Zeng L, Zhao Z, Lu Y. Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon, Acipenser transmontanus. Methods Cell Sci. 2003; 25(3–4):211-20.
  • [27]Fontana F. Establishment of sturgeon primary cell lines. In: Fish cytogenetic techniques (Chondrichthyans and Teleosts). Ozouf-Costaz C, Pisano E, Foresti F, Foresti L, Foresti de Almeida Toledo L, editors. CRC Press Inc, Enfield; 2015: p.49-57.
  • [28]Stanyon R, Galleni L. A rapid fibroblast-culture technique for high-resolution karyotypes. B Zool. 1991; 58(1):81-3.
  • [29]Wolf K, Ahne W. Fish cell culture. In: Advances in cell culture. Maramorosch K, editor. Academic Press, Inc, New York; 1982: p.305-28.
  • [30]Rab P. A note on the karyotype on the sterlet, Acipenser ruthenus (Pisces, Acipenseridae). Folia Zool. 1986; 35(1):73-8.
  • [31]Fontana F, Rossi R, Lanfredi M, Arlati G, Bronzi P. Chromosome banding in sturgeons. J Appl Ichthyol. 1999; 15:9-11.
  • [32]Medrano L, Bernardi G, Couturier J, Dutrillaux B, Bernardi G. Chromosome-banding and genome compartmentalization in fishes. Chromosoma. 1988; 96(2):178-83.
  • [33]Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG et al.. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990; 99(1):3-10.
  • [34]Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994; 371(6494):215-20.
  • [35]Fontana F, Lanfredi M, Kirschbaum F, Garrido-Ramos MA, Robles F, Forlani A et al.. Comparison of karyotypes of Acipenser oxyrinchus and A. sturio by chromosome banding and fluorescent in situ hybridization. Genetica. 2008; 132(3):281-6.
  • [36]Cioffi MB, Martins C, Vicari MR, Rebordinos L, Bertollo LAC. Differentiation of the XY sex chromosomes in the fish hoplias malabaricus (Characiformes, Erythrinidae): unusual accumulation of repetitive sequences on the X chromosome. Sex Dev. 2010; 4(3):176-85.
  • [37]Schemberger MO, Oliveira JI, Nogaroto V, Almeida MC, Artoni RF, Cestari MM et al.. Construction and characterization of a repetitive DNA library in Parodontidae (Atinopterygii:Characiformes): a genomic and evolutionary approach to the degeneration of the w sex cromosome. Zebrafish. 2014; 11(6):518-27.
  • [38]Wang YM, Minoshima S, Shimizu N. Cot-1 banding of human-chromosomes using fluorescence in-situ hybridization with Cy3 labeling. Jpn J Hum Genet. 1995; 40(3):243-52.
  • [39]Zhang L, Xu C, Yu W. Cloning and characterization of chromosomal markers from a Cot-1 library of peanut (Arachis hypogaea L.). Cytogenet Genome Res. 2012; 137(1):31-41.
  • [40]Ohno S. Evolution by gene duplication. Springer, Berlin Heidelberg; 1970.
  • [41]Furlong RF, Holland PWH. Polyploidy in vertebrate ancestry: Ohno and beyond. Biol J Linn Soc. 2004; 82(4):425-30.
  • [42]Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Kohler N. Discovery of tetraploidy in a mammal. Nature. 1999; 401(6751):341.
  • [43]Svartman M, Stone G, Stanyon R. Molecular cytogenetics discards polyploidy in mammals. Genomics. 2005; 85(4):425-30.
  • [44]Trifonov VA, Paoletti A, Caputo Barucchi V, Kalinina T, O’Brien PC, Ferguson-Smith MA et al.. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid lepidodactylus lugubris (Gekkonidae). PLoS One. 2015; 10(7):e0132380.
  • [45]Birstein VJ, Hanner R, DeSalle R. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish. 1997; 48(1–4):127-56.
  • [46]Fontana F, Tagliavini J, Congiu L. Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica. 2001; 111(1–3):359-73.
  • [47]Tagliavini J, Conterio F, Gandolfi G, Fontana F. Mitochondrial DNA sequences of six sturgeon species and phylogenetic relationships within Acipenseridae. J Appl Ichthyol. 1999; 15(4–5):17-22.
  • [48]Dingerkus G, Howell WM. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science. 1976; 194(4267):842-4.
  • [49]de la Herran R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R et al.. Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol. 2001; 18(3):432-6.
  • [50]Lemskaya NA, Romanenko SA, Golenishchev FN, Rubtsova NV, Sablina OV, Serdukova NA et al.. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species. Chromosome Res. 2010; 18(4):459-71.
  • [51]Graphodatsky AS, Radjabli SI. Chromosomes of agricultural and laboratory mammals. Nauka, Novosibirsk; 1988.
  • [52]Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991; 19(17):4780.
  • [53]Maden BE, Dent CL, Farrell TE, Garde J, McCallum FS, Wakeman JA. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J. 1987; 246(2):519-27.
  • [54]Trifonov VA, Vorobieva NV, Rens W. FISH with and without COT1 DNA. In: Fluorescence in situ hybridization (FISH) – application guide. 2009.99-112.
  • [55]Kosyakova N, Hamid AB, Chaveerach A, Pinthong K, Siripiyasing P, Supiwong W et al.. Generation of multicolor banding probes for chromosomes of different species. Mol Cytogenet. 2013; 6:6. BioMed Central Full Text
  • [56]Yang F, Graphodatsky AS. Animal probes and ZOO-FISH fluorescence in situ hybridization (FISH). In: Fluorescence in situ hybridization (FISH) – application guide. Liehr T, editor. Springer, Berlin; 2009: p.323-47.
  文献评价指标  
  下载次数:28次 浏览次数:19次