Plant Methods | |
An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods | |
Peter Shaw1  Jordi Chan1  Chris Hindle1  Grant Calder1  | |
[1] Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK | |
关键词: Plant tissue; Live cell imaging; Perfusion; Time-lapse microscopy; Imaging chamber; Arabidopsis; | |
Others : 1174968 DOI : 10.1186/s13007-015-0065-7 |
|
received in 2015-02-16, accepted in 2015-03-12, 发布年份 2015 | |
【 摘 要 】
Background
Recent developments in both microscopy and fluorescent protein technologies have made live imaging a powerful tool for the study of plant cells. However, the complications of keeping plant material alive during a long duration experiment while maintaining maximum resolution has limited the use of these methods.
Results
Here, we describe an imaging chamber designed to overcome these limitations, which is flexible enough to support a range of sizes of plant materials. We were able use confocal microscopy to follow growth and development of plant cells and tissues over several days. The chamber design is based on a perfusion system, so that the addition of drugs and other experimental treatments are also possible.
Conclusions
In this article we present a design of imaging chamber that makes it possible to image plant material with high resolution for extended periods of time.
【 授权许可】
2015 Calder et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150425083745319.pdf | 2098KB | download | |
Figure 6. | 46KB | Image | download |
Figure 5. | 175KB | Image | download |
Figure 4. | 56KB | Image | download |
Figure 3. | 61KB | Image | download |
Figure 2. | 172KB | Image | download |
Figure 1. | 69KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Brandizzi F, Fricker M, Hawes C. A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol. 2002; 3(7):520-30. doi:10. 1038/nrm861
- [2]Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994; 263(5148):802-5.
- [3]Shaw SL. Imaging the live plant cell. Plant J. 2006; 45(4):573-98. doi:10. 1111/j.1365-313X.2006.02653.x
- [4]Shaw SL, Ehrhardt DW. Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol. 2013; 64:351-75. doi:10. 1146/annurev-arplant-042110-103843
- [5]Cutler S, Ehrhardt D. Dead cells don’t dance: insights from live-cell imaging in plants. Curr Opin Plant Biol. 2000; 3(6):532-7.
- [6]Robinson S, Barbier de Reuille P, Chan J, Bergmann D, Prusinkiewicz P, Coen E. Generation of spatial patterns through cell polarity switching. Science. 2011; 333(6048):1436-40. doi:10. 1126/science.1202185
- [7]Chan J, Calder G, Fox S, Lloyd C. Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol. 2007; 9(2):171-5. doi:10. 1038/ncb1533
- [8]Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG et al.. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell. 2009; 21(5):1592-606. doi:10. 1105/tpc.108.060434
- [9]Fiji Is Just ImageJ. [http://fiji.sc/wiki/index.php/Fiji]
- [10]ImageJ - Image Processing and Analysis in Java. [http://imagej.nih.gov/ij/].
- [11]Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009; 25(11):1463-5. doi:10. 1093/bioinformatics/btp184
- [12]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. doi:10. 1038/nmeth.2019
- [13]Imaging and Perfusion Chamber Internet Resources. [http://www.microscopyu.com/articles/livecellimaging/chamberresources.html]
- [14]Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR, Ehrhardt DW et al. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp. 2012(65). doi:10.3791/4290.
- [15]Sauret-Gueto S, Calder G, Harberd NP. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. Plant J. 2012; 69(4):628-39. doi:10. 1111/j.1365-313X.2011.04817.x
- [16]Kuchen EE, Fox S, de Reuille PB, Kennaway R, Bensmihen S, Avondo J et al.. Generation of leaf shape through early patterns of growth and tissue polarity. Science. 2012; 335(6072):1092-6. doi:10. 1126/science.1214678
- [17]Vandenberg C, Willemsen V, Hage W, Weisbeek P, Scheres B. Cell Fate in the Arabidopsis Root-Meristem Determined by Directional Signaling. Nature. 1995; 378(6552):62-5. doi:10. 1038/378062a0
- [18]Pesquet E, Korolev AV, Calder G, Lloyd CW. The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol. 2010; 20(8):744-9. doi:10. 1016/j.cub.2010.02.057
- [19]Ueda K, Matsuyama T, Hashimoto T. Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma. 1999; 206(1–3):201-6. doi:10. 1007/Bf01279267
- [20]Thévenaz P. StackReg - An ImageJ plugin for the recursive alignment of a stack of images. [http://bigwww.epfl.ch/thevenaz/stackreg/]
- [21]Rasband W. Time Stamper. [http://rsb.info.nih.gov/ij/plugins/stamper.html]