期刊论文详细信息
Radiation Oncology
Randomized phase II trial of hypofractionated proton versus carbon ion radiation therapy in patients with sacrococcygeal chordoma-the ISAC trial protocol
Klaus Herfarth1  Jürgen Debus3  Oliver Jäckel3  Falk Röder2  Jan Oelmann2  Gregor Habl2  Alexandra D Jensen1  Lutz Edler3  Matthias Uhl1 
[1] Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany;Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany;German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
关键词: Heavy ion therapy;    Hypofractionation;    Randomized trial;    Irradiation;    Proton therapy;    Carbon ion therapy;    Chordoma;    Sacral chordoma;   
Others  :  805458
DOI  :  10.1186/1748-717X-9-100
 received in 2014-02-27, accepted in 2014-04-24,  发布年份 2014
PDF
【 摘 要 】

Background

Chordomas are relatively rare lesions of the bones. About 30% occur in the sacrococcygeal region. Surgical resection is still the standard treatment. Due to the size, proximity to neurovascular structures and the complex anatomy of the pelvis, a complete resection with adequate safety margin is difficult to perform. A radical resection with safety margins often leads to the loss of bladder and rectal function as well as motoric/sensoric dysfunction. The recurrence rate after surgery alone is comparatively high, such that adjuvant radiation therapy is very important for improving local control rates. Proton therapy is still the international standard in the treatment of chordomas. High-LET beams such as carbon ions theoretically offer biologic advantages in slow-growing tumors. Data of a Japanese study of patients with unresectable sacral chordoma showed comparable high control rates after hypofractionated carbon ion therapy only.

Methods and design

This clinical study is a prospective randomized, monocentric phase II trial. Patients with histologically confirmed sacrococcygeal chordoma will be randomized to either proton or carbon ion radiation therapy stratified regarding the clinical target volume. Target volume delineation will be carried out based on CT and MRI data. In each arm the PTV will receive 64 GyE in 16 fractions. The primary objective of this trial is safety and feasibility of hypofractionated irradiation in patients with sacrococygeal chordoma using protons or carbon ions in raster scan technique for primary or additive treatment after R2 resection. The evaluation is therefore based on the proportion of treatments without Grade 3–5 toxicity (CTCAE, version 4.0) up to 12 months after treatment and/or discontinuation of the treatment for any reason as primary endpoint. Local-progression free survival, overall survival and quality of life will be analyzed as secondary end points.

Discussion

The aim of this study is to confirm the toxicity results of the Japanese data in raster scan technique and to compare it with the toxicity analysis of proton therapy given in the same fractionation. Using this data, a further randomized phase III trial is planned, comparing hypofractionated proton and carbon ion irradiation.

Trial registration

ClinicalTrials.gov Identifier: NCT01811394.

【 授权许可】

   
2014 Uhl et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708080056577.pdf 733KB PDF download
Figure 3. 28KB Image download
Figure 2. 84KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M: Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol 2012, 88:103-107.
  • [2]Kramer M, Weyrather WK, Scholz M: The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2003, 2:427-436.
  • [3]Scholz M, Kraft G: Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res 1996, 18:5-14.
  • [4]Murakami M, Eguchi-Kasai K, Sato K, Minohara S, Yatagai F, Kanai T: Differences in heavy-ion-induced DNA double-strand breaks in a mouse DNA repair-deficient mutant cell line (SL3-147) before and after chromatin proteolysis. J Radiat Res 1995, 36:258-264.
  • [5]Heilmann J, Taucher-Scholz G, Haberer T, Scholz M, Kraft G: Measurement of intracellular dna double-strand break induction and rejoining along the track of carbon and neon particle beams in water. Int J Radiat Oncol Biol Phys 1996, 34:599-608.
  • [6]McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM: Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 2001, 12:1-11.
  • [7]Bjornsson J, Wold LE, Ebersold MJ, Laws ER: Chordoma of the mobile spine. A clinicopathologic analysis of 40 patients. Cancer 1993, 71:735-740.
  • [8]Rosenberg AE, Brown GA, Bhan AK, Lee JM: Chondroid chordoma–a variant of chordoma. A morphologic and immunohistochemical study. Am J Clin Pathol 1994, 101:36-41.
  • [9]Chugh R, Tawbi H, Lucas DR, Biermann JS, Schuetze SM, Baker LH: Chordoma: the nonsarcoma primary bone tumor. Oncologist 2007, 12:1344-1350.
  • [10]Chen KW, Yang HL, Lu J, Liu JY, Chen XQ: Prognostic factors of sacral chordoma after surgical therapy: a study of 36 patients. Spinal Cord 2010, 48:166-171.
  • [11]Fuchs B, Dickey ID, Yaszemski MJ, Inwards CY, Sim FH: Operative management of sacral chordoma. J Bone Joint Surg Am 2005, 87:2211-2216.
  • [12]Osaka S, Kodoh O, Sugita H, Osaka E, Yoshida Y, Ryu J: Clinical significance of a wide excision policy for sacrococcygeal chordoma. J Cancer Res Clin Oncol 2006, 132:213-218.
  • [13]York JE, Kaczaraj A, Abi-Said D, Fuller GN, Skibber JM, Janjan NA, York JE, Kaczaraj A, Abi-Said D, Fuller GN, Skibber JM, Janjan NA, Gokaslan ZL: Sacral chordoma: 40-year experience at a major cancer center. Neurosurgery 1999, 44:74-79. discussion 9–80
  • [14]Park L, Delaney TF, Liebsch NJ, Hornicek FJ, Goldberg S, Mankin H, Rosenberg AE, Rosenthal DI, Suit HD: Sacral chordomas: Impact of high-dose proton/photon-beam radiation therapy combined with or without surgery for primary versus recurrent tumor. Int J Radiat Oncol Biol Phys 2006, 65:1514-1521.
  • [15]Munzenrider JE, Liebsch NJ: Proton therapy for tumors of the skull base. Strahlenther Onkol 1999, 175(Suppl 2):57-63.
  • [16]Hug EB, Loredo LN, Slater JD, DeVries A, Grove RI, Schaefer RA, Rosenberg AE, Slater JM: Proton radiation therapy for chordomas and chondrosarcomas of the skull base. J Neurosurg 1999, 91:432-439.
  • [17]Ares C, Hug EB, Lomax AJ, Bolsi A, Timmermann B, Rutz HP, Schuller JC, Pedroni E, Goitein G: Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys 2009, 75:1111-1118.
  • [18]Schulz-Ertner D, Karger CP, Feuerhake A, Nikoghosyan A, Combs SE, Jäkel O, Edler L, Scholz M, Debus J: Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol Biol Phys 2007, 68:449-457.
  • [19]Nikoghosyan AV, Karapanagiotou-Schenkel I, Munter MW, Jensen AD, Combs SE, Debus J: Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-Study. BMC Cancer 2010, 10:607. BioMed Central Full Text
  • [20]Devin C, Chong PY, Holt GE, Feurer I, Gonzalez A, Merchant N, Schwartz HS: Level-adjusted perioperative risk of sacral amputations. J Surg Oncol 2006, 94:203-211.
  • [21]Cheng EY, Ozerdemoglu RA, Transfeldt EE, Thompson RC Jr: Lumbosacral chordoma. Prognostic factors and treatment. Spine (Phila Pa 1976) 1999, 24:1639-1645.
  • [22]Nishida Y, Kamada T, Imai R, Tsukushi S, Yamada Y, Sugiura H, Shido Y, Wasa J, Ishiguro N: Clinical outcome of sacral chordoma with carbon ion radiotherapy compared with surgery. Int J Radiat Oncol Biol Phys 2011, 79:110-116.
  • [23]Imai R, Kamada T, Tsuji H, Sugawara S, Serizawa I, Tsujii H, Tatezaki S, Working Group for Bone and Soft Tissue Sarcomas: Effect of carbon ion radiotherapy for sacral chordoma: results of Phase I-II and Phase II clinical trials. Int J Radiat Oncol Biol Phys 2010, 77:1470-1476.
  • [24]Elsasser T, Kramer M, Scholz M: Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 2008, 71:866-872.
  • [25]Imai R, Kamada T, Sugahara S, Tsuji H, Tsujii H: Carbon ion radiotherapy for sacral chordoma. Br J Radiol 2011, 84(Spec No 1):S48-S54.
  • [26]Hall EJ: Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006, 65:1-7.
  • [27]Blackwelder WC: “Proving the null hypothesis” in clinical trials. Control Clin Trials 1982, 3:345-353.
  • [28]DeLaney TF, Liebsch NJ, Pedlow FX, Adams J, Dean S, Yeap BY, McManus P, Rosenberg AE, Nielsen GP, Harmon DC, Spiro IJ, Raskin KA, Suit HD, Yoon SS, Hornicek FJ: Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys 2009, 74:732-739.
  • [29]Yanagi T, Kamada T, Tsuji H, Imai R, Serizawa I, Tsujii H: Dose-volume histogram and dose-surface histogram analysis for skin reactions to carbon ion radiotherapy for bone and soft tissue sarcoma. Radiother Oncol 2010, 95:60-65.
  • [30]Davidge KM, Eskicioglu C, Lipa J, Ferguson P, Swallow CJ, Wright FC: Qualitative assessment of patient experiences following sacrectomy. J Surg Oncol 2010, 101:447-450.
  • [31]Hulen CA, Temple HT, Fox WP, Sama AA, Green BA, Eismont FJ: Oncologic and functional outcome following sacrectomy for sacral chordoma. J Bone Joint Surg Am 2006, 88:1532-1539.
  文献评价指标  
  下载次数:54次 浏览次数:15次