期刊论文详细信息
Particle and Fibre Toxicology
Insecticide resistance status in Culex quinquefasciatus in Benin
Martin Akogbéto2  Gil Padonou2  Ramasamy Srinivasan5  Roseline Attolou4  Hanna Jöst3  Ramziath Agbanrin4  Kefilath Badirou4  Agnes Yadouléton1 
[1] Ecole Normale Supérieure de Natitingou-Université de Parakou, Parakou, Benin;Université d’Abomey-Calavi, Faculté des Sciences et Techniques, Cotonou, Benin;German Centre for Infection Research, partner site Hamburg-Luebeck-Borstel, Hamburg, Germany;Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, République du Bénin;AVRDC-The World Vegetable Center, Shanhua, Tainan 74151, Taiwan
关键词: Benin;    Agriculture;    Resistance;    Insecticide;    Culex quinquefasciatus;   
Others  :  1147912
DOI  :  10.1186/s13071-015-0638-3
 received in 2014-11-11, accepted in 2015-01-02,  发布年份 2015
PDF
【 摘 要 】

Background

Culex quinquefasciatus, an arboviral and filarial vector, is present year round in several cities of the Republic of Benin. There is more information on the resistance status to malaria vectors compared to Culicines. It is therefore unfortunate that the international focus is on Anopheles control and not so much done against Cx. quinquefasciatus, a rather more resilient mosquito to many insecticides that deserves attention. The present study aims to assess the resistance status of Cx. quinquefasciatus to carbamates, pyrethroids and organochlorine and discuss the implications for vector control in four contrasting localities of the country.

Methods

Four contrasting localities of the country were selected for mosquito collection during the dry season based on their variation in agricultural production, use of insecticides and/or ecological settings. Bioassay were performed on adults collected from the field to assess the susceptibility of Cx. quinquefasciatus to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. Molecular assays were carried out to detect the presence of knock down resistance (kdr) and acetylcholinesterase (ace. 1) mutations in surviving specimens using PCR techniques.

Results

WHO diagnostic tests showed high frequency of resistance in Cx. quinquefasciatus to permethrin (ranging from 4 to 24% mortality), deltamethrin (24 to 48%), DDT (4 to 12%) and bendiocarb (60 to 76%) in the four selected areas. This was consistent with the presence of target site insensitivity due to kdr and ace.1 mutations, which were significantly higher in areas where farmers used insecticides for pests control than in areas where no insecticides were used (p < 0.05.).

Conclusion

These findings showed that wild populations of Cx. quinquefasciatus have developed resistance against pyrethroids, organochlorine and carbamate. This situation of resistance may seriously jeopardize the efficacy of Insecticide Residual Spray (IRS) and Long-Lasting Insecticide nets (LLINs) on which, most African countries including Benin, rely to reduce malaria transmission.

【 授权许可】

   
2015 Anges et al; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150404063725528.pdf 658KB PDF download
Figure 5. 120KB Image download
【 图 表 】

Figure 5.

【 参考文献 】
  • [1]Jones C, Machin C, Majambere K, Ali S, Khatib A, Mcha O, Ranson H, Kelly-Hope LA. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit Vectors. 2012; 5:78. BioMed Central Full Text
  • [2]Rodriquez M, Ortiz E, Bisset JA, Hemingway J. Changes in malathion and pyrethroid resistance after cypermethrin selection of Culex quinquefasciatus field populations of Cuba. Medicine Veterinary Entomology. 1993; 7:117-21.
  • [3]Subra R. Biology and control of Culex pipiens quinquefasciatus with special reference to Africa. Insect Sci Applic. 1981; 1:319-38.
  • [4]Mattingly PF, Lloyd E, Rozenbool KL, Knight H, Laven FH, Drummond S, Christophers R, Shute PG. The Culex pipiens complex. Trans R Ent Soc. 1951; 102:331-42.
  • [5]Maxwell CA, Curtis CF, Haji H, Kisumku S, Thalib AI, Yahya SA. Control of bancroftian filariasis by integrating therapy with vector control using polystyrene beads in wet pit latrines. Trans R Soc Trop Med Hyg. 1990; 84:709-14.
  • [6]Maxwell CA, Mohammed K, Kisumku U, Curtis CF. Can vector control play a useful supplementary role against bancroftian filariasis? Bull World Health Organ. 1999; 77:138-43.
  • [7]Sasa M. Human Filariasis - A Global Survey of Epidemiology and Control. University Park Press, Baltimore, Maryland; 1976.
  • [8]Filariasis Research and Control in Eastern and Southern Africa. DBL-Centre for Health Research and Development, Denmark; 2008.
  • [9]Guillemaud T, Lenormand T, Bourguet D, Chevillon C, Pasteur N, Raymond M. Evolution of resistance in Culex pipiens: allele replacement and changing environment. Evolution. 1998; 52:430-40.
  • [10]Mohammed KA, Molyneux DH, Albonico M, Rio F. Progress towards eliminating lymphatic filariasis in Zanzibar: a model programme. Trends Parasitol. 2006; 22:340-4.
  • [11]Corbel V, N’Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbéto M, Hougard JM, Rowland M. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 2007; 101:207-16.
  • [12]Aïkpon R, Sèzonlin M, Tokponon F, Okè M, Oussou O, Oké-Agbo F, Beach R, Akogbéto M. Good performances but short lasting efficacy of Actellic 50 EC Indoor Residual Spraying (IRS) on malaria transmission in Benin, West Africa. Parasit Vectors. 2014; 7:256. BioMed Central Full Text
  • [13]Curtis CF, Mnzava AE. Comparison of house spraying and insecticide-treated nets for malaria control. Bull World Health Organ. 2000; 78:1389-400.
  • [14]Kawada H, Maekawa Y, Abe M, Ohashi K, Ohba SY, Takagi M. Spatial distribution and pyrethroid susceptibility of mosquito larvae collected from catch basins in parks in Nagasaki city, Nagasaki, Japan. J Infect Dis. 2010; 63:19-24.
  • [15]Ping LT, Yatiman R, Gek LP. Susceptibility of adult field strains of Aedes aegypti and Aedes albopictus in Singapore to pirimiphos-methyl and permethrin. J Am Mosq Control Assoc. 2001; 17:144-6.
  • [16]Wondji CS, Priyanka De Silva WA, Hemingway J, Ranson H, Parakrama Karunaratne SH. Characterization of knockdown resistance in DDT-and pyrethroid-resistant Culex quinquefasciatus populations from Sri Lanka. Trop Med Int Health. 2008; 13:548-55.
  • [17]Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabiré R, Aïkpon R, Boko M, Glitho I, Akogbeto M. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasit Vectors. 2011; 4:60. BioMed Central Full Text
  • [18]Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL, Geneva, Switzerland; 1998.
  • [19]Kent RJ, Thuma PE, Mharakurwa S, Norris DE. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am J Trop Med Hyg. 2007; 76:267-74.
  • [20]Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998; 7:179-84.
  • [21]Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004; 13:1-7.
  • [22]Abbott W. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925; 18:265-7.
  • [23]Raymond M, Rousset F. Genepop (version 12), a population genetics software exact tests and ecumenicism. J Heredity. 1995; 86:248-9.
  • [24]Akogbéto M, Yakoubou S. Résistance des vecteurs du paludisme vis-à-vis des pyréthrinoïdes utilisés pour l'imprégnation des moustiquaires au Bénin, Afrique de l'Ouest. Bull Soc Path Exot. 1999; 92:123-30.
  • [25]Akogbéto M, Djouaka R, Noukpo H. Use of agricultural insecticides in Benin. Bull Soc Pathol Exot. 2005; 98:400-5.
  • [26]Yadouleton AW, Asidi A, Djouaka RF, Braïma J, Agossou CD, Akogbeto MC. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malar J. 2009; 8:103. BioMed Central Full Text
  • [27]Chen L, Zhong DB, Zhang DH, Shi LN, Zhou GF, Gong MQ, Zhou HY, Sun Y, Ma L, He J, Hong S, Zhou D, Xiong C, Chen C, Zou P, Zhu C, Yan G. Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes. Plos One. 2010; 5:7.
  • [28]Czeher C, Labbo R, Arzika I, Duchemin JB. Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar J. 2008; 7:189. BioMed Central Full Text
  文献评价指标  
  下载次数:91次 浏览次数:108次