期刊论文详细信息
Molecular Neurodegeneration
Heparan sulfate proteoglycans mediate Aβ-induced oxidative stress and hypercontractility in cultured vascular smooth muscle cells
Gregory J. Zipfel4  Byung Hee Han1  Guojun Bu2  Marc Diamond3  Hans H. Dietrich5  Phillip B. Verghese4  Brandon B. Holmes4  Tej D. Azad5  Itender Singh5  Matthew R. Reynolds5 
[1] Department of Pharmacology, AT Still University Health Sciences, Kirksville, Missouri, USA;Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern, Dallas, Texas, USA;Department of Neurology, Washington University School of Medicine, Hope Center Program on Protein Aggregation and Neurodegeneration, Charles F. and Joanne Knight Alzheimer’s Disease Research Center, St. Louis, Missouri, USA;Department of Neurological Surgery, Washington University School of Medicine, Hope Center Program on Protein Aggregation and Neurodegeneration, Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Campus Box 8057, 660 South Euclid Avenue, St. Louis 63110, Missouri, USA
关键词: Heparin;    Heparinase;    Oxidative stress;    Reactive oxygen species;    Cerebrovascular dysfunction;    Vascular smooth muscle cells;    Alzheimer’s disease;    Heparan sulfate proteoglycans;   
Others  :  1235647
DOI  :  10.1186/s13024-016-0073-8
 received in 2015-02-03, accepted in 2016-01-12,  发布年份 2016
PDF
【 摘 要 】

Background

Substantial evidence suggests that amyloid-β (Aβ) species induce oxidative stress and cerebrovascular (CV) dysfunction in Alzheimer’s disease (AD), potentially contributing to the progressive dementia of this disease. The upstream molecular pathways governing this process, however, are poorly understood. In this report, we examine the role of heparan sulfate proteoglycans (HSPG) in Aβ-induced vascular smooth muscle cell (VSMC) dysfunction in vitro.

Results

Our results demonstrate that pharmacological depletion of HSPG (by enzymatic degradation with active, but not heat-inactivated, heparinase) in primary human cerebral and transformed rat VSMC mitigates Aβ 1-40 - and Aβ 1-42 -induced oxidative stress. This inhibitory effect is specific for HSPG depletion and does not occur with pharmacological depletion of other glycosaminoglycan (GAG) family members. We also found that Aβ 1-40(but not Aβ 1-42 ) causes a hypercontractile phenotype in transformed rat cerebral VSMC that likely results from a HSPG-mediated augmentation in intracellular Ca 2+activity, as both Aβ 1-40 -induced VSMC hypercontractility and increased Ca 2+influx are inhibited by pharmacological HSPG depletion. Moreover, chelation of extracellular Ca 2+with ethylene glycol tetraacetic acid (EGTA) does not prevent the production of Aβ 1-40 - or Aβ 1-42 -mediated reactive oxygen species (ROS), suggesting that Aβ-induced ROS and VSMC hypercontractility occur through different molecular pathways.

Conclusions

Taken together, our data indicate that HSPG are critical mediators of Aβ-induced oxidative stress and Aβ 1-40 -induced VSMC dysfunction.

【 授权许可】

   
2016 Reynolds et al.

【 预 览 】
附件列表
Files Size Format View
20160124042049817.pdf 2823KB PDF download
Fig. 7. 128KB Image download
Fig. 6. 24KB Image download
Fig. 5. 134KB Image download
Fig. 4. 53KB Image download
Fig. 3. 22KB Image download
Fig. 2. 17KB Image download
Fig. 1. 23KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Selkoe DJ. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol. 1998; 8(11):447-453.
  • [2]Zipfel GJ, Han H, Ford AL, Lee J-M. Cerebral amyloid angiopathy progressive disruption of the neurovascular unit. Stroke. 2009; 40(3 suppl 1):S16-S19.
  • [3]Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ et al.. Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain. 2007; 130(9):2310-9.
  • [4]Hamel E. The cerebral circulation: function and dysfunction in Alzheimer’s disease. J Cardiovasc Pharmacol. 2014.
  • [5]Nicolakakis N, Hamel E. Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab. 2011; 31(6):1354-1370.
  • [6]Han BH. Zhou M-l, Abousaleh F, Brendza RP, Dietrich HH, Koenigsknecht-Talboo J, et al. Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-β peptide, partial restoration via γ-secretase inhibition. J Neurosci. 2008; 28(50):13542-50.
  • [7]Park L, Koizumi K, El Jamal S, Zhou P, Previti ML, Van Nostrand WE et al.. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke. 2014; 45(6):1815-21.
  • [8]Park L, Zhou P, Koizumi K, El Jamal S, Previti ML, Van Nostrand WE et al.. Brain and circulating levels of Aβ1–40 differentially contribute to vasomotor dysfunction in the mouse brain. Stroke. 2013; 44(1):198-204.
  • [9]Milner E, Zhou M-L, Johnson AW, Vellimana AK, Greenberg JK, Holtzman DM et al.. Cerebral amyloid angiopathy increases susceptibility to infarction after focal cerebral ischemia in Tg2576 mice. Stroke. 2014; 45(10):3064-9.
  • [10]Zhang F, Eckman C, Younkin S, Hsiao KK, Iadecola C. Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J Neurosci. 1997; 17(20):7655-7661.
  • [11]Koistinaho M, Kettunen MI, Goldsteins G, Keinänen R, Salminen A, Ort M et al.. Beta-amyloid precursor protein transgenic mice that harbor diffuse Abeta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci U S A. 2002; 99:1610-5.
  • [12]Iadecola C, Park L, Capone C. Threats to the mind aging, amyloid, and hypertension. Stroke. 2009; 40(3 suppl 1):S40-S44.
  • [13]Dietrich HH, Xiang C, Han BH, Zipfel GJ, Holtzman DM. Soluble amyloid-β, effect on cerebral arteriolar regulation and vascular cells. Mol Neurodegener. 2010; 5(1):15. BioMed Central Full Text
  • [14]Price JM, Sutton ET, Hellermann A, Thomas T. beta-Amyloid induces cerebrovascular endothelial dysfunction in the rat brain. Neurol Res. 1997; 19(5):534-538.
  • [15]Park L, Anrather J, Forster C, Kazama K, Carlson GA, Iadecola C. Aβ-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cereb Blood Flow Metab. 2004; 24(3):334-342.
  • [16]Niwa K, Carlson GA, Iadecola C. Exogenous Ab1–40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab. 2000; 20(12):1659-1668.
  • [17]Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S et al.. NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci. 2005; 25(7):1769-77.
  • [18]Garcia-Alloza M, Prada C, Lattarulo C, Fine S, Borrelli LA, Betensky R et al.. Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. J Neurochem. 2009; 109(6):1636-47.
  • [19]Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH et al.. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci. 2008; 105(4):1347-52.
  • [20]Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al.. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science. 1996; 274(5284):99-103.
  • [21]Han BH, Zhou M-l, Johnson AW, Singh I, Liao F, Vellimana AK, et al. Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc Natl Acad Sci U S A. 2015;112(8):E881–890.
  • [22]van Horssen J, Wesseling P, van Den Heuvel LP, De Waal RM, Verbeek MM. Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid‐related disorders. Lancet Neurol. 2003; 2(8):482-492.
  • [23]Snow A, Mar H, Nochlin D, Sekiguchi R, Kimata K, Koike Y et al.. Early accumulation of heparan sulfate in neurons and in the beta-amyloid protein-containing lesions of Alzheimer’s disease and Down’s syndrome. Am J Pathol. 1990; 137(5):1253.
  • [24]van Horssen J, Otte-Höller I, David G, Maat-Schieman ML, Heuvel LP, Wesseling P et al.. Heparan sulfate proteoglycan expression in cerebrovascular amyloid β deposits in Alzheimer’s disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathol. 2001; 102(6):604-14.
  • [25]Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD. Perlecan binds to the β‐amyloid proteins (Aβ) of Alzheimer’s disease, accelerates Aβ fibril formation, and maintains Aβ fibril stability. J Neurochem. 1997; 69(6):2452-2465.
  • [26]Cotman SL, Halfter W, Cole GJ. Agrin binds to β-amyloid (Aβ), accelerates Aβ fibril formation, and is localized to Aβ deposits in Alzheimer’s disease brain. Mol Cell Neurosci. 2000; 15(2):183-198.
  • [27]Sandwall E, O’Callaghan P, Zhang X, Lindahl U, Lannfelt L, Li J-P. Heparan sulfate mediates amyloid-beta internalization and cytotoxicity. Glycobiology. 2010; 20(5):533-541.
  • [28]Kanekiyo T, Bu G. Receptor-associated protein interacts with amyloid-β peptide and promotes its cellular uptake. J Biol Chem. 2009; 284(48):33352-33359.
  • [29]Kanekiyo T, Zhang J, Liu Q, Liu C-C, Zhang L, Bu G. Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-β uptake. J Neurosci. 2011; 31(5):1644-1651.
  • [30]Li J-P, Galvis MLE, Gong F, Zhang X, Zcharia E, Metzger S et al.. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci U S A. 2005; 102(18):6473-7.
  • [31]Iadecola C. Cerebrovascular effects of amyloid-ß peptides: mechanisms and implications for Alzheimer’s dementia. Cell Mol Neurobiol. 2003; 23(4-5):681-689.
  • [32]Gahr M, Nowak DA, Connemann BJ, Schönfeldt-Lecuona C. Cerebral amyloidal angiopathy—a disease with implications for neurology and psychiatry. Brain Res. 2013; 1519:19-30.
  • [33]Attems J, Jellinger K, Thal D, Van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2011; 37(1):75-93.
  • [34]Christie R, Yamada M, Moskowitz M, Hyman B. Structural and functional disruption of vascular smooth muscle cells in a transgenic mouse model of amyloid angiopathy. Am J Pathol. 2001; 158(3):1065-1071.
  • [35]Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M et al.. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci. 2009; 106(10):4012-17.
  • [36]Diglio CA, Grammas P, Giacomelli F, Wiener J. Rat cerebral microvascular smooth muscle cells in culture. J Cell Physiol. 1986; 129(2):131-141.
  • [37]Diglio CA, Wolfe DE, Meyers P. Transformation of rat cerebral endothelial cells by Rous sarcoma virus. J Cell Biol. 1983; 97(1):15-21.
  • [38]Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985; 260(6):3440-3450.
  • [39]Poenie M, Alderton J, Steinhardt R, Tsien R. Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science. 1986; 233(4766):886-889.
  • [40]Batlle DC, Peces R, LaPointe MS, Ye M, Daugirdas JT. Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am J Physiol. 1993;264:C932–2.
  • [41]Dietrich HH, Kimura M, Dacey RG. Nw-nitro-L-arginine constricts cerebral arterioles without increasing intracellular calcium levels. Am J Physiol. 1994; 266(35):H1681-H1686.
  • [42]Shinohara M, Petersen RC, Dickson DW, Bu G. Brain regional correlation of amyloid-β with synapses and apolipoprotein E in non-demented individuals: potential mechanisms underlying regional vulnerability to amyloid-β accumulation. Acta Neuropathol. 2013; 125(4):535-547.
  • [43]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -DDCT method. Methods. 2001; 25(4):402-408.
  • [44]Crawford F, Suo Z, Fang C, Mullan M. Characteristics of the in vitro vasoactivity of β-amyloid peptides. Exp Neurol. 1998; 150(1):159-168.
  • [45]Sullivan M, Galea P, Latif S. What is the appropriate oxygen tension for in vitro culture? Mol Hum Reprod. 2006; 12(11):653.
  • [46]Bergamaschini L, Rossi E, Storini C, Pizzimenti S, Distaso M, Perego C et al.. Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and β-amyloid accumulation in a mouse model of Alzheimer’s disease. J Neurosci. 2004; 24(17):4181-6.
  • [47]Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K et al.. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 2013; 110(33):E3138-3147.
  • [48]Brunden KR, Richter‐Cook NJ, Chaturvedi N, Frederickson RC. pH‐dependent binding of synthetic β‐amyloid peptides to glycosaminoglycans. J Neurochem. 1993; 61(6):2147-2154.
  • [49]Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol. 2002; 283(1):H315-H323.
  • [50]Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S et al.. Aβ1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci. 2000; 97(17):9735-40.
  • [51]Niwa K, Porter VA, Kazama K, Cornfield D, Carlson GA, Iadecola C. Aβ-peptides enhance vasoconstriction in cerebral circulation. Am J Physiol Heart Circ Physiol. 2001; 281(6):H2417-H2424.
  • [52]Paris D, Humphrey J, Quadros A, Patel N, Crescentini R, Crawford F et al.. Vasoactive effects of Aβ in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer’s disease: role of inflammation. Neurol Res. 2003; 25(6):642-51.
  • [53]Ratz PH, Berg KM, Urban NH, Miner AS. Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am J Physiol Cell Physiol. 2005; 288(4):C769-C783.
  • [54]Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM, Iadecola C et al.. Vascular contributions to cognitive impairment and dementia a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011; 42(9):2672-713.
  • [55]Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 2014.
  • [56]Vickrey B, Brott T, Koroshetz W. Stroke research priorities meeting steering committee and the national advisory neurological disorders and stroke council; National Institute of Neurological Disorders and Stroke. Research priority setting: a summary of the 2012 NINDS stroke planning meeting report. Stroke. 2013; 44:2338-2342.
  • [57]Tong X-K, Nicolakakis N, Kocharyan A, Hamel E. Vascular remodeling versus amyloid β-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. J Neurosci. 2005; 25(48):11165-11174.
  • [58]Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P et al.. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor γ agonist. J Neurosci. 2008; 28(37):9287-96.
  • [59]Tong X, Hamel E. Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience. 1999; 92(1):163-175.
  • [60]De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST et al.. Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007; 282(15):11590-601.
  • [61]Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M, Hyman BT, Bacskai BJ. Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol. 2006; 65(11):1082-1089.
  • [62]Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. FASEB J. 2009; 23(8):2459-2466.
  • [63]Santpere G, Puig B, Ferrer I. Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer’s disease and cerebral amyloid angiopathy. Neuroscience. 2007; 146(4):1640-1651.
  • [64]El Khoury J, Hickman S, Thomas C, Loike J, Silverstein S. Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease. Neurobiol Aging. 1998; 19(1):S81-S84.
  • [65]McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci. 2003; 23(6):2212-2217.
  • [66]Oh ES, Troncoso JC, Tucker SMF. Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer’s disease. Neuromolecular Med. 2008; 10(3):195-207.
  文献评价指标  
  下载次数:27次 浏览次数:17次