期刊论文详细信息
Respiratory Research
The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis
Max Salfinger2  Linda M Parsons3  Akos Somoskovi1 
[1] Department of Respiratory Medicine, Semmelweis University, Budapest, Hungary;Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA;Wadsworth Center, New York State Department of Health, Albany, New York, USA
关键词: rifampin;    pyrazinamide;    Mycobacterium tuberculosis;    isoniazid;    drug resistance;   
Others  :  1227450
DOI  :  10.1186/rr54
 received in 2001-02-23, accepted in 2001-03-01,  发布年份 2001
PDF
【 摘 要 】

Multidrug-resistant (MDR) strains of Mycobacterium tuberculosis have emerged worldwide. In many countries and regions, these resistant strains constitute a serious threat to the efficacy of tuberculosis control programs. An important element in gaining control of this epidemic is developing an understanding of the molecular basis of resistance to the most important antituberculosis drugs: isoniazid, rifampin, and pyrazinamide. On the basis of this information, more exacting laboratory testing, and ultimately more appropriate and timely treatment regimens, can be developed.

【 授权许可】

   
2001 BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150928102354412.pdf 710KB PDF download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Jarlier W, Nikaido H: Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 1994, 123:11-18.
  • [2]Lee RE, Brennan PJ, Besra GS: Mycobacterium tuberculosis cell envelope. Curr Top Microbiol Immunol 1996, 215:1-27.
  • [3]Kwon HH, Tomioka H, Saito H: Distribution and characterization of beta-lactamases of mycobacteria and related organisms. Tuber Lung Dis 1995, 76:141-148.
  • [4]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393:537-544.
  • [5]Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR: A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000, 405:962-966.
  • [6]Vester B, Douthwaite S: Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 2001, 45:1-12.
  • [7]Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JD, Grosset JH, Cole ST: Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994, 344:293-298.
  • [8]Zhang Y, Telenti A: Genetics of drug resistance in Mycobacterium tuberculosis. In: Molecular Genetics of Mycobacteria. Edited by Hatful GF, Jacobs WR Jr. Washington DC: ASM Press; 2000, 235-254.
  • [9]World Health Organization Global Tuberculosis Programme and International Union Against Tuberculosis and Lung Disease: Anti-tuberculosis Drug Resistance in the World, Report No. 2. Prevalence and Trends. WHO/CDS/TB/2000.278. Geneva: World Health Organization;. 2000.
  • [10]International Union Against Tuberculosis and Lung Disease: Guidelines for surveillance of drug resistance in tuberculosis. WHO Geneva/IUATLD Paris. Int J Tuberc Lung Dis 1998, 2:72-89.
  • [11]DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE III: Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2000, 97:9677-9682.
  • [12]Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S: Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother 1998, 42:621-628.
  • [13]Johnsson K, Schultz PG: Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc 1994, 116:7425-7426.
  • [14]Middlebrook G: Isoniazid resistance and catalase activity of tubercle bacilli. Am Rev Tuberc 1954, 69:471-472.
  • [15]Zhang Y, Heym B, Allen B, Young D, Cole S: The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992, 358:591-593.
  • [16]Ramaswamy S, Musser JM: Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuberc Lung Dis 1998, 79:3-29.
  • [17]Marttila HJ, Soini H, Eerola E, Vyshnevskaya E, Vyshnevskiy BI, Otten TF, Vasilyef AV, Viljanen MK: A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob Agents Chemother 1998, 42:2443-2445.
  • [18]Rouse DA, DeVito JA, Li Z, Byer H, Morris SL: Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol 1996, 22:583-592.
  • [19]Vilchèze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M, Sacchettini JC, Jacobs WR Jr: Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 2000, 182:4059-4067.
  • [20]Slayden RA, Lee RE, Barry CE: Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol 2000, 38:514-525.
  • [21]Lee AS, Lim IH, Tang LL, Telenti A, Wong SY: Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother 1999, 43:2087-2089.
  • [22]Piatek AS, Telenti A, Murray MR, El-Hajj H, Jacobs WR Jr, Kramer FR, Alland D: Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: Implications for rapid susceptibility testing. Antimicrob Agents Chemother 2000, 44:103-110.
  • [23]Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE III, Stover CK: Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 1996, 272:1641-1643.
  • [24]Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchard JS, Collins DM: Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 1998, 144:2687-2695.
  • [25]Mitchison DA, Nunn AJ: Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis 1986, 133:423-430.
  • [26]Grosset J: The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy. Bull Int Union Tuberc 1978, 53:5-12.
  • [27]Mitchison DA: The Garrod Lecture. Understanding the chemotherapy of tuberculosis: current problems. J Antimicrob Chemother 1992, 29:477-493.
  • [28]Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T: Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993, 341:647-650.
  • [29]Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN: Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 1996, 40:2655-2657.
  • [30]Ohno H, Koga H, Kohno S, Tashiro T, Hara K: Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother 1996, 40:1053-1056.
  • [31]Heep M, Rieger U, Beck D, Lehn N: Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob Agents Chemother 2000, 44:1075-1077.
  • [32]Zimhony O, Cox JS, Welch JT, Vilcheze C, Jacobs WR Jr: Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Med 2000, 6:1043-1047.
  • [33]Salfinger M, Crowle AJ, Reller LB: Pyrazinamide and pyrazinoic acid activity against tubercle bacilli in cultured human macrophages and in the BACTEC system. J Infect Dis 1990, 162:201-207.
  • [34]Zhang Y, Scorpio A, Nikaido H, Sun Z: Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol 1999, 181:2044-2049.
  • [35]Konno K, Feldman FM, McDermont W: Pyrazinamide susceptibility and amidase activity of the tubercle bacilli. Am Rev Respir Dis 1967, 95:461-469.
  • [36]Scorpio A, Zhang Y: Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the anti-tuberculous drug pyrazinamide in tubercle bacillus. Nature Med 1996, 2:662-667.
  • [37]Raynaud C, Laneelle MA, Senaratne RH, Draper P, Laneelle G, Daffe M: Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology 1999, 145:1359-1367.
  • [38]Van Rie A, Warren R, Mshanga I, Jordaan AM, van der Spuy GD, Richardson M, Simpson J, Gie RP, Enarson DA, Beyers N, van Helden PD, Victor TC: Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J Clin Microbiol 2001, 39:636-641.
  • [39]Hale YM, Desmond EP, Jost KC Jr, Salfinger M: Access to newer laboratory procedures: a call for action. Int J Tuberc Lung Dis 2000, 4(suppl 2):S171-S175.
  • [40]Parsons LM, Driscoll JR, Taber HW, Salfinger M: Drug resistance in tuberculosis. Infect Dis Clin North Am 1997, 11:905-928.
  文献评价指标  
  下载次数:11次 浏览次数:14次