Particle and Fibre Toxicology | |
Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system | |
RC Andrew Thompson3  Paul Monis2  Peta L Clode1  Wan Koh3  | |
[1] Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia;School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia | |
关键词: Fluorescence; qPCR; Water; Extracellular multiplication; Biofilms; Cryptosporidium; | |
Others : 824571 DOI : 10.1186/1756-3305-6-270 |
|
received in 2013-08-06, accepted in 2013-09-15, 发布年份 2013 | |
【 摘 要 】
Background
In natural aquatic environments biofilms are known to act as environmental reservoirs for Cryptosporidium parvum oocysts. However, the fate of these oocysts within biofilms has yet to be determined.
Methods
This study aimed to identify if biofilms have the ability to support the multiplication of Cryptosporidium by measuring the change in parasite number over time using quantitative polymerase chain reaction (qPCR) and detecting the possible extracellular developmental stages using a combination of confocal microscopy and immunolabelling techniques. Pseudomonas aeruginosa biofilm flow cell systems were established and C. parvum oocysts were constantly supplied over a six day period.
Results
A significant (P < 0.001) increase in Cryptosporidium was detected as the biofilm matured, with the total number of C. parvum multiplying 2–3 fold during this period. With this, various Cryptosporidium developmental stages (sporozoites, trophozoites, type I and II meronts) were identified from the biofilm.
Conclusion
This is the first study demonstrating that biofilms not only serve as an environmental reservoir for oocysts, but are also capable of supporting the multiplication of Cryptosporidium over time in an aquatic environment.
【 授权许可】
2013 Koh et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140713035612293.pdf | 3518KB | download | |
Figure 8. | 97KB | Image | download |
Figure 7. | 91KB | Image | download |
Figure 6. | 94KB | Image | download |
Figure 5. | 96KB | Image | download |
Figure 4. | 40KB | Image | download |
Figure 3. | 38KB | Image | download |
Figure 2. | 44KB | Image | download |
Figure 1. | 82KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Putignani L, Menichella D: Global distribution, public health and clinical impact of the protozoan pathogen Cryptosporidium. Interdiscip Perspect Infect Dis 2010. doi: 10.1155/2010/753512
- [2]Rose JB: Environmental ecology of Cryptosporidium and public health implications. Annu Rev Public Health 1997, 18:135-161.
- [3]Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS: Cryptosporidium and cryptosporidiosis. Adv Parasitol 2005, 59:77-158.
- [4]Borowski H, Clode PL, Thompson RCA: Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium. Trends Parasitol 2008, 24:509-516.
- [5]Tzipori S, Griffiths JK: Natural history and biology of Cryptosporidium parvum. Adv Parasitol 1998, 40:5-36.
- [6]Borowski H, Thompson RCA, Armstrong T, Clode PL: Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology 2010, 137:13-26.
- [7]Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U: Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol 2010, 169:29-36.
- [8]Hijjawi NS, Meloni BP, Ng’anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RCA: Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol 2004, 34:769-777.
- [9]Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RCA: Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 2002, 32:1719-1726.
- [10]Karanis P, Kimura A, Nagasawa H, Igarashi I, Suzuki N: Observations on Cryptosporidium life cycle stages during excystation. J Parasitol 2008, 94:298-300.
- [11]Rosales MJ, Cordón GP, Moreno MS, Sánchez CM, Mascaró C: Extracellular like-gregarine stages of Cryptosporidium parvum. Acta Trop 2005, 95:74-78.
- [12]Zhang L, Sheoran AS, Widmer G: Cryptosporidium parvum DNA replication in cell-free culture. J Parasitol 2009, 95:1239-1242.
- [13]Carreno RA, Martin DS, Barta JR: Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitol Res 1999, 85:899-904.
- [14]Leander BS, Harper JT, Keeling PJ: Molecular phylogeny and surface morphology of marine aseptate gregarines (Apicomplexa): Selenidium spp. and Lecudina spp. J Parasitol 2003, 89:1191-1205.
- [15]Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, et al.: Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004, 304:441-445.
- [16]Declerck P, Behets J, Margineanu A, van Hoef V, De Keersmaecker B, Ollevier F: Replication of Legionella pneumophila in biofilms of water distribution pipes. Microbiol Res 2009, 164:593-603.
- [17]Dunne WM: Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002, 15:155-166.
- [18]Fisher I, Angles M, Chandy J, Cox P, Warnecke M, Kastl G, Jegatheesan V: Biofilms - a sticky situation for drinking water? Water 2000, 27:33-37.
- [19]Wingender J, Flemming HC: Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 2011, 214:417-423.
- [20]Helmi K, Skraber S, Gantzer C, Willame R, Hoffmann L, Cauchie H-M: Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm. Appl Environ Microbiol 2008, 74:2079-2088.
- [21]Searcy KE, Packman AI, Atwill ER, Harter T: Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2006, 72:6242-6247.
- [22]Angles ML, Chandy JP, Cox PT, Fisher IH, Warnecke MR: Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry. Trends Parasitol 2007, 23:352-356.
- [23]Howe AD, Forster S, Morton S, Marshall R, Osborn KS, Wright P, Hunter PR: Cryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak. Emerg Infect Dis 2002, 8:619-624.
- [24]Meloni BP, Thompson RC: Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro. J Parasitol 1996, 82:757-762.
- [25]Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS: Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2004, 70:6188-6196.
- [26]Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S: Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146(Pt 10):2395-2407.
- [27]Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S: Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2009, 2:370-378.
- [28]Boxell A, Hijjawi N, Monis P, Ryan U: Comparison of various staining methods for the detection of Cryptosporidium in cell-free culture. Exp Parasitol 2008, 120:67-72.
- [29]Edwards H, Andrew Thompson R, Koh WH, Clode PL: Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach. Mol Cell Probes 2012, 26:21-28.
- [30]Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP: The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998, 280:295-298.
- [31]Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002, 184:1140-1154.
- [32]Wolyniak EA, Hargreaves BR, Jellison KL: Retention and release of Cryptosporidium parvum oocysts by experimental biofilms composed of a natural stream microbial community. Appl Environ Microbiol 2009, 75:4624-4626.
- [33]Wolyniak EA, Hargreaves BR, Jellison KL: Seasonal retention and release of Cryptosporidium parvum oocysts by environmental biofilms in the laboratory. Appl Environ Microbiol 2010, 76:1021-1027.
- [34]Umemiya R, Fukuda M, Fujisaki K, Matsui T: Electron microscopic observation of the invasion process of Cryptosporidium parvum in severe combined immunodeficiency mice. J Parasitol 2005, 91:1034-1039.
- [35]Lumb R, Smith K, O’Donoghue PJ, Lanser JA: Ultrastructure of the attachment of Cryptosporidium sporozoites to tissue culture cells. Parasitol Res 1988, 74:531-536.
- [36]Current WL, Reese NC: A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice. J Protozool 1986, 33:98-108.
- [37]Petry F: Structural analysis of Cryptosporidium parvum. Microsc Microanal 2004, 10:586-601.
- [38]Matsubayashi M, Ando H, Kimata I, Nakagawa H, Furuya M, Tani H, Sasai K: Morphological changes and viability of Cryptosporidium parvum sporozoites after excystation in cell-free culture media. Parasitology 2010, 137:1861-1866.
- [39]Karanis P, Aldeyarbi HM: Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011, 41:1231-1242.
- [40]Alarcón ME, Huang CG, Tsai YS, Chen WJ, Dubey AK, Wu WJ: Life cycle and morphology of Steinina ctenocephali (Ross 1909) comb. nov. (Eugregarinorida: Actinocephalidae), a gregarine of Ctenocephalides felis (Siphonaptera: Pulicidae) in Taiwan. Zool Stud 2011, 50:763-772.
- [41]Leander BS: Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol 2008, 24:60-67.
- [42]Jirku M, Valigurova A, Koudela B, Krizek J, Modry D, Slapeta J: New species of Cryptosporidium tyzzer, 1907 (Apicomplexa) from amphibian host: morphology, biology and phylogeny. Folia Parasitol (Praha) 2008, 55:81-94.
- [43]Valigurová A, Jirků M, Koudela B, Gelnar M, Modrý D, Šlapeta J: Cryptosporidia: Epicellular parasites embraced by the host cell membrane. Int J Parasitol 2008, 38:913-922.
- [44]King BJ, Hoefel D, Lim SP, Robinson BS, Monis PT: Flow cytometric assessment of distinct physiological stages within Cryptosporidium parvum sporozoites post-excystation. Parasitology 2009, 136:953-966.
- [45]Valdez LM, Dang H, Okhuysen PC, Chappell CL: Flow cytometric detection of Cryptosporidium oocysts in human stool samples. J Clin Microbiol 1997, 35:2013-2017.
- [46]Vesey G, Griffiths KR, Gauci MR, Deere D, Williams KL, Veal DA: Simple and rapid measurement of Cryptosporidium excystation using flow cytometry. Int J Parasitol 1997, 27:1353-1359.
- [47]Singleton S, Treloar R, Warren P, Watson GK, Hodgson R, Allison C: Methods for microscopic characterization of oral biofilms: Analysis of colonization, microstructure, and molecular transport phenomena. Adv Dent Res 1997, 11:133-149.
- [48]Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS: Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 2003, 11:94-100.
- [49]Okabe S, Kuroda H, Watanabe Y: Significance of biofilm structure on transport of inert participates into biofilms. Water Sci Technol 1998, 38:163-170.
- [50]Okabe S, Satoh H, Kindaichi T: A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms. Methods Enzymol 2011, 496:163-184.