期刊论文详细信息
Skeletal Muscle
A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging
Ola Hansson4  Johan Rung5  Leif Groop4  Alvis Brazma1  Kristoffer Ström2  Leo Lahti3  Nikolay Oskolkov4  Carl Ekman4  Jing Su1 
[1] European Molecular Biology Laboratory—European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, Wellcome Trust Genome Campus, UK;Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, SE-83125, Sweden;Department of Veterinary Biosciences, University of Helsinki, Helsinki, FI-00014, Finland;Lund University Diabetes Center, Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital Malmö, Lund University, Malmö 20502, Sweden;Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
关键词: Exercise;    Mitochondrial dysfunction;    Aging;    Microarray;    Expression;    Skeletal muscle;   
Others  :  1231176
DOI  :  10.1186/s13395-015-0059-1
 received in 2015-07-02, accepted in 2015-09-28,  发布年份 2015
PDF
【 摘 要 】

Background

Although high-throughput studies of gene expression have generated large amounts of data, most of which is freely available in public archives, the use of this valuable resource is limited by computational complications and non-homogenous annotation. To address these issues, we have performed a complete re-annotation of public microarray data from human skeletal muscle biopsies and constructed a muscle expression compendium consisting of nearly 3000 samples. The created muscle compendium is a publicly available resource including all curated annotation. Using this data set, we aimed to elucidate the molecular mechanism of muscle aging and to describe how physical exercise may alleviate negative physiological effects.

Results

We find 957 genes to be significantly associated with aging (p < 0.05, FDR = 5 %, n = 361). Aging was associated with perturbation of many central metabolic pathways like mitochondrial function including reduced expression of genes in the ATP synthase, NADH dehydrogenase, cytochrome C reductase and oxidase complexes, as well as in glucose and pyruvate processing. Among the genes with the strongest association with aging were H3 histone, family 3B (H3F3B, p = 3.4 × 10 −13 ), AHNAK nucleoprotein, desmoyokin (AHNAK, p = 6.9 × 10 −12 ), and histone deacetylase 4 (HDAC4, p = 4.0 × 10 −9 ). We also discover genes previously not linked to muscle aging and metabolism, such as fasciculation and elongation protein zeta 2 (FEZ2, p = 2.8 × 10 −8 ). Out of the 957 genes associated with aging, 21 (p < 0.001, false discovery rate = 5 %, n = 116) were also associated with maximal oxygen consumption (VO 2MAX ). Strikingly, 20 out of those 21 genes are regulated in opposite direction when comparing increasing age with increasing VO 2MAX .

Conclusions

These results support that mitochondrial dysfunction is a major age-related factor and also highlight the beneficial effects of maintaining a high physical capacity for prevention of age-related sarcopenia.

【 授权许可】

   
2015 Su et al.

【 预 览 】
附件列表
Files Size Format View
20151109081826860.pdf 892KB PDF download
Fig. 3. 34KB Image download
Fig. 2. 55KB Image download
Fig. 1. 101KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al.. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009; 90(6):1579-85.
  • [2]Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev. 2006; 5(2):179-95.
  • [3]Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab. 2013; 20(1):1-10.
  • [4]Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al.. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006; 61(10):1059-64.
  • [5]Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R et al.. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2006; 2(7):e115.
  • [6]de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009; 25(7):875-81.
  • [7]Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S et al.. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006; 79(3):469-80.
  • [8]Austin S, St-Pierre J. PGC1α and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012; 125(Pt 21):4963-71.
  • [9]Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al.. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3):267-73.
  • [10]Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S et al.. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003; 100(14):8466-71.
  • [11]Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al.. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001; 3(11):1014-9.
  • [12]Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH et al.. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol. 2009; 29(14):3991-4001.
  • [13]Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W et al.. A global map of human gene expression. Nat Biotechnol. 2010; 28(4):322-4.
  • [14]Zheng-Bradley X, Rung J, Parkinson H, Brazma A. Large scale comparison of global gene expression patterns in human and mouse. Genome Biol. 2010; 11(12):R124. BioMed Central Full Text
  • [15]Ojala KA, Kilpinen SK, Kallioniemi OP. Classification of unknown primary tumors with a data-driven method based on a large microarray reference database. Genome Med. 2011; 3(9):63. BioMed Central Full Text
  • [16]Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H et al.. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008; 9(9):R139. BioMed Central Full Text
  • [17]Rung J, Brazma A. Reuse of public genome-wide gene expression data. Nat Rev Genet. 2013; 14(2):89-99.
  • [18]Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I et al.. ArrayExpress update--trends in database growth and links to data analysis tools. Nucleic Acids Res. 2013; 41(Database issue):D987-90.
  • [19]Lahti L, Elo LL, Aittokallio T, Kaski S. Probabilistic analysis of probe reliability in differential gene expression studies with short oligonucleotide arrays. IEEE/ACM Trans Comput Biol Bioinform. 2011; 8(1):217-25.
  • [20]Lahti L, Torrente A, Elo LL, Brazma A, Rung J. A fully scalable online pre-processing algorithm for short oligonucleotide microarray atlases. Nucleic Acids Res. 2013; 41(10): Article ID e110
  • [21]Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics. 2009; 25(3):415-6.
  • [22]The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45(6):580-5.
  • [23]Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):R25. BioMed Central Full Text
  • [24]Rudy J, Valafar F. Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics. 2011; 12:467. BioMed Central Full Text
  • [25]Parikh H, Nilsson E, Ling C, Poulsen P, Almgren P, Nittby H et al.. Molecular correlates for maximal oxygen uptake and type 1 fibers. Am J Physiol Endocrinol Metab. 2008; 294(6):E1152-9.
  • [26]Horn D, Zhou W, Trevisson E, Al-Ali H, Harris TK, Salviati L et al.. The conserved mitochondrial twin Cx9C protein Cmc2 Is a Cmc1 homologue essential for cytochrome c oxidase biogenesis. J Biol Chem. 2010; 285(20):15088-99.
  • [27]Szekeres F, Chadt A, Tom RZ, Deshmukh AS, Chibalin AV, Björnholm M et al.. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am J Physiol Endocrinol Metab. 2012; 303(4):E524-33.
  • [28]An D, Toyoda T, Taylor EB, Yu H, Fujii N, Hirshman MF et al.. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes. 2010; 59(6):1358-65.
  • [29]Wang N, Yang C, Xie F, Sun L, Su X, Wang Y et al.. Gadd45α: a novel diabetes-associated gene potentially linking diabetic cardiomyopathy and baroreflex dysfunction. PLoS ONE. 2012; 7(12): Article ID e49077
  • [30]Sporrer D, Weber M, Wanninger J, Weigert J, Neumeier M, Stögbauer F et al.. Adiponectin downregulates CD163 whose cellular and soluble forms are elevated in obesity. Eur J Clin Invest. 2009; 39(8):671-9.
  • [31]Bongers KS, Fox DK, Ebert SM, Kunkel SD, Dyle MC, Bullard SA et al.. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab. 2013; 305(7):E907-15.
  • [32]Cheng Y, Wang Y, Li Y, Deng Y, Hu J, Mo X et al.. A novel human gene ZNF415 with five isoforms inhibits AP-1- and p53-mediated transcriptional activity. Biochem Biophys Res Commun. 2006; 351(1):33-9.
  • [33]Møller HJ, Frikke-Schmidt R, Moestrup SK, Nordestgaard BG, Tybjærg-Hansen A. Serum soluble CD163 predicts risk of type 2 diabetes in the general population. Clin Chem. 2011; 57(2):291-7.
  • [34]Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S et al.. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005; 102(15):5618-23.
  • [35]Johnson ML, Robinson MM, Nair KS. Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab. 2013; 24(5):247-56.
  • [36]Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000; 526(Pt 1):203-10.
  • [37]McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafín A, Ware J et al.. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature. 2011; 478(7367):114-8.
  • [38]Humphries AD, Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ et al.. Dissection of the mitochondrial import and assembly pathway for human Tom40. J Biol Chem. 2005; 280(12):11535-43.
  • [39]Joseph AM, Ljubicic V, Adhihetty PJ, Hood DA. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am J Physiol Cell Physiol. 2010; 298(6):C1308-14.
  • [40]Schaefer L, Ballabio A, Zoghbi HY. Cloning and characterization of a putative human holocytochrome c-type synthetase gene (HCCS) isolated from the critical region for microphthalmia with linear skin defects (MLS). Genomics. 1996; 34(2):166-72.
  • [41]Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N et al.. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009; 15(3):259-66.
  • [42]Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K et al.. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A. 2008; 105(37):13987-92.
  • [43]Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A et al.. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004; 117(3):399-412.
  • [44]Hamilton SR, Stapleton D, O’Donnell JB, Kung JT, Dalal SR, Kemp BE et al.. An activating mutation in the gamma1 subunit of the AMP-activated protein kinase. FEBS Lett. 2001; 500(3):163-8.
  • [45]Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ et al.. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007; 5(2):151-6.
  • [46]Kulkarni SS, Karlsson HK, Szekeres F, Chibalin AV, Krook A, Zierath JR. Suppression of 5′-nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle. J Biol Chem. 2011; 286(40):34567-74.
  • [47]Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013; 93(3):993-1017.
  • [48]Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L et al.. Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab. 2014; 99(5):1852-61.
  • [49]Dey BR, Spence SL, Nissley P, Furlanetto RW. Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem. 1998; 273(37):24095-101.
  • [50]Haddad F, Adams GR. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol (1985). 2006; 100(4):1188-203.
  • [51]Buford TW, Cooke MB, Willoughby DS. Resistance exercise-induced changes of inflammatory gene expression within human skeletal muscle. Eur J Appl Physiol. 2009; 107(4):463-71.
  文献评价指标  
  下载次数:48次 浏览次数:37次