Radiation Oncology | |
MR-guidance – a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy | |
Florian Sterzing2  Jürgen Debus2  Peter Häring3  Gernot Echner3  Stefan Delorme1  Angela Mohr2  Jörg G Grossmann3  Nils H Nicolay2  Tilman Bostel2  | |
[1] Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany;Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany | |
关键词: Shuttle; Dose reduction; MR-guided radiotherapy; IGRT; | |
Others : 815095 DOI : 10.1186/1748-717X-9-12 |
|
received in 2013-09-24, accepted in 2013-12-13, 发布年份 2014 | |
【 摘 要 】
Background
The purpose of this clinical study is to investigate the clinical feasibility and safety of a shuttle-based MR-linac connection to provide MR-guided radiotherapy.
Methods/Design
A total of 40 patients with an indication for a neoadjuvant, adjuvant or definitive radiation treatment will be recruited including tumors of the head and neck region, thorax, upper gastrointestinal tract and pelvic region. All study patients will receive standard therapy, i.e. highly conformal radiation techniques like CT-guided intensity-modulated radiotherapy (IMRT) with or without concomitant chemotherapy or other antitumor medication, and additionally daily short MR scans in treatment position with the same immobilisation equipment used for irradiation for position verification and imaging of the anatomical and functional changes during the course of radiotherapy. For daily position control, skin marks and a stereotactic frame will be used for both imaging modalities. Patient transfer between the MR device and the linear accelerator will be performed with a shuttle system which uses an air-bearing patient platform for both procedures. The daily acquired MR and CT data sets will be digitally registrated, correlated with the planning CT and compared with each other regarding translational and rotational errors. Aim of this clinical study is to establish a shuttle-based approach for realising MR-guided radiotherapy for certain clinical situations. Second objectives are to compare MR-guided radiotherapy with the gold standard of CT image guidance for quality assurance of radiotherapy, to establish an appropiate MR protocol therefore, and to assess the possibility of using MR-based image guidance not only for position verification but also for adaptive strategies in radiotherapy.
Discussion
Compared to CT, MRI might offer the advantage of providing IGRT without delivering an additional radiation dose to the patients and the possibility of optimisation of adaptive therapy strategies due to its superior soft tissue contrast. However, up to now, hybrid MR-linac devices are still under construction and not clinically applicable. For the near future, a shuttle-based approach would be a promising alternative for providing MR-guided radiotherapy, so that the present study was initiated to determine feasibility and safety of such an approach. Besides positioning information, daily MR data under treatment offer the possibility to assess tumor regression and functional parameters, with a potential impact not only on adaptive therapy strategies but also on early assessment of treatment response.
【 授权许可】
2014 Bostel et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140710054337645.pdf | 270KB | download | |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Garg MK, Glanzman J, Kalnicki S: The evolving role of positron emission tomography-computed tomography in organ-preserving treatment of head and neck cancer. Semin Nucl Med 2012, 42(5):320-327.
- [2]Prestwich RJ, Sykes J, Carey B, Sen M, Dyker KE, Scarsbrook AF: Improving target definition for head and neck radiotherapy: a place for magnetic resonance imaging and 18-fluoride fluorodeoxyglucose positron emission tomography? Clin Oncol (R Coll Radiol) 2012, 24(8):577-589.
- [3]Gotz L, Spehl TS, Weber WA, Grosu AL: PET and SPECT for radiation treatment planning. Q J Nucl Med Mol Imaging 2012, 56(2):163-172.
- [4]Mac Manus MP, Hicks RJ: The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012, 42(5):308-319.
- [5]Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, Podlesek D, Eisenhut M, Kratochwil C: Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 2012, 39(9):1409-1415.
- [6]Khoo VS, Joon DL: New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006, 79 Spec No 1:S2-S15.
- [7]Xing L, Thorndyke B, Schreibmann E, Yang Y, Li TF, Kim GY, Luxton G, Koong A: Overview of image-guided radiation therapy. Med Dosim 2006, 31(2):91-112.
- [8]Dawson LA, Sharpe MB: Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 2006, 7(10):848-858.
- [9]Thieke C, Malsch U, Schlegel W, Debus J, Huber P, Bendl R, Thilmann C: Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 2006, 79 Spec No 1:S79-S86.
- [10]Sterzing F, Herfarth K, Debus J: IGRT with helical tomotherapy--effort and benefit in clinical routine. Strahlenther Onkol 2007, 183 Spec No 2:35-37.
- [11]Sterzing F, Engenhart-Cabillic R, Flentje M, Debus J: Image-guided radiotherapy: a new dimension in radiation oncology. Dtsch Arztebl Int 2011, 108(16):274-280.
- [12]Thilmann C, Nill S, Tucking T, Hoss A, Hesse B, Dietrich L, Bendl R, Rhein B, Haring P, Thieke C, et al.: Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences. Radiat Oncol 2006, 1:16. BioMed Central Full Text
- [13]Jensen AD, Grehn C, Nikoghosyan A, Thieke C, Krempien R, Huber PE, Debus J, Munter MW: Catch me if you can–the use of image guidance in the radiotherapy of an unusual case of esophageal cancer. Strahlenther Onkol 2009, 185(7):469-473.
- [14]Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, Olivera GH, Meeks SL, Kupelian PA, Shellenberger TD, et al.: Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys 2008, 71(5):1563-1571.
- [15]Perkins CL, Fox T, Elder E, Kooby DA, Staley CA 3rd, Landry J: Image-guided radiation therapy (IGRT) in gastrointestinal tumors. JOP 2006, 7(4):372-381.
- [16]Sonke JJ, Belderbos J: Adaptive radiotherapy for lung cancer. Semin Radiat Oncol 2010, 20(2):94-106.
- [17]Stoiber EM, Giske K, Schubert K, Sterzing F, Habl G, Uhl M, Herfarth K, Bendl R, Debus J: Local setup reproducibility of the spinal column when using intensity-modulated radiation therapy for craniospinal irradiation with patient in supine position. Int J Radiat Oncol Biol Phys 2011, 81(5):1552-1559.
- [18]Schwartz DL, Garden AS, Shah SJ, Chronowski G, Sejpal S, Rosenthal DI, Chen Y, Zhang Y, Zhang L, Wong PF, et al.: Adaptive radiotherapy for head and neck cancer–dosimetric results from a prospective clinical trial. Radiother Oncol 2013, 106(1):80-84.
- [19]Hall EJ: Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006, 65(1):1-7.
- [20]Boda-Heggemann J, Kohler FM, Kupper B, Wolff D, Wertz H, Mai S, Hesser J, Lohr F, Wenz F: Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 2008, 70(4):1247-1255.
- [21]Molloy JA, Chan G, Markovic A, McNeeley S, Pfeiffer D, Salter B, Tome WA, Group AT: Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154. Med Phys 2011, 38(2):857-871.
- [22]Bohrer M, Schroder P, Welzel G, Wertz H, Lohr F, Wenz F, Mai SK: Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT (B-mode acquisition and targeting system) for prostate cancer. Strahlenther Onkol 2008, 184(12):674-678.
- [23]Boda-Heggemann J, Mennemeyer P, Wertz H, Riesenacker N, Kupper B, Lohr F, Wenz F: Accuracy of ultrasound-based image guidance for daily positioning of the upper abdomen: an online comparison with cone beam CT. Int J Radiat Oncol Biol Phys 2009, 74(3):892-897.
- [24]Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, van der Put RW, Meijsing I, Crijns SP, Benedosso F, et al.: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 2009, 54(12):N229-N237.
- [25]Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D: First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 2009, 36(6):2084-2088.
- [26]Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hardemark B, van Vulpen M, van der Heide UA: MRI/linac integration. Radiother Oncol 2008, 86(1):25-29.
- [27]Stam MK, van Vulpen M, Barendrecht MM, Zonnenberg BA, Intven M, Crijns SP, Lagendijk JJ, Raaymakers BW: Kidney motion during free breathing and breath hold for MR-guided radiotherapy. Phys Med Biol 2013, 58(7):2235-2245.
- [28]Stam MK, Crijns SP, Zonnenberg BA, Barendrecht MM, van Vulpen M, Lagendijk JJ, Raaymakers BW: Navigators for motion detection during real-time MRI-guided radiotherapy. Phys Med Biol 2012, 57(21):6797-6805.
- [29]Raaijmakers AJ, Raaymakers BW, Lagendijk JJ: Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol 2008, 53(4):909-923.
- [30]St Aubin J, Steciw S, Fallone BG: Effect of transverse magnetic fields on a simulated in-line 6 MV linac. Phys Med Biol 2010, 55(16):4861-4869.
- [31]Santos DM, St Aubin J, Fallone BG, Steciw S: Magnetic shielding investigation for a 6 MV in-line linac within the parallel configuration of a linac-MR system. Med Phys 2012, 39(2):788-797.
- [32]Crijns SP, Raaymakers BW, Lagendijk JJ: Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy. Phys Med Biol 2011, 56(1):289-297.
- [33]Constantin DE, Fahrig R, Keall PJ: A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Med Phys 2011, 38(7):4174-4185.
- [34]Ghilezan M, Yan D, Martinez A: Adaptive radiation therapy for prostate cancer. Semin Radiat Oncol 2010, 20(2):130-137.
- [35]Burke B, Wachowicz K, Fallone BG, Rathee S: Effect of radiation induced current on the quality of MR images in an integrated linac-MR system. Med Phys 2012, 39(10):6139-6147.
- [36]Stam MK, van Vulpen M, Barendrecht MM, Zonnenberg BA, Crijns SP, Lagendijk JJ, Raaymakers BW: Dosimetric feasibility of MRI-guided external beam radiotherapy of the kidney. Phys Med Biol 2013, 58(14):4933-4941.
- [37]Raaijmakers AJ, Raaymakers BW, Lagendijk JJ: Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol 2005, 50(7):1363-1376.