期刊论文详细信息
Respiratory Research
Human leukocyte antigen-G expression in differentiated human airway epithelial cells: lack of modulation by Th2-associated cytokines
Bertha A Marroquin1  Timothy Floreth1  Bharathi Laxman1  Randi Stern1  Dagan A Loisel2  Steven R White1 
[1] From the Departments of Medicine and Human Genetics, Chicago, IL 60637, USA;Human Genetics, University of Chicago, Chicago, IL 60637, USA
关键词: Asthma;    IL-10;    IL-5;    IL-4;    IL-13;    Airway epithelium;    HLA-G;   
Others  :  796560
DOI  :  10.1186/1465-9921-14-4
 received in 2012-10-03, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

Human leukocyte antigen (HLA)-G is a nonclassical class I antigen with immunomodulatory roles including up-regulation of suppressor T regulatory lymphocytes. HLA-G was recently identified as an asthma susceptibility gene, and expression of a soluble isoform, HLA-G5, has been demonstrated in human airway epithelium. Increased presence of HLA-G5 has been demonstrated in bronchoalveolar lavage fluid recovered from patients with mild asthma; this suggests a role for this isoform in modulating airway inflammation though the mechanisms by which this occurs is unclear. Airway inflammation associated with Th2 cytokines such as IL-4 and IL-13 is a principal feature of asthma, but whether these cytokines elicit expression of HLA-G is not known.

Methods

We examined gene and protein expression of both soluble (G5) and membrane-bound (G1) HLA-G isoforms in primary differentiated human airway epithelial cells collected from normal lungs and grown in air-liquid interface culture. Cells were treated with up to 10 ng/ml of either IL-4, IL-5, or IL-13, or 100 ng/ml of the immunomodulatory cytokine IL-10, or 10,000 U/ml of the Th1-associated cytokine interferon-beta, for 24 hr, after which RNA was isolated for evaluation by quantitative PCR and protein was collected for Western blot analysis.

Results

HLA-G5 but not G1 was present in dAEC as demonstrated by quantitative PCR, western blot and confocal microscopy. Neither G5 nor G1 expression was increased by the Th2-associated cytokines IL-4, IL-5 or IL-13 over 24 hr, nor after treatment with IL-10, but was increased 4.5 ± 1.4 fold after treatment with 10,000 U/ml interferon-beta.

Conclusions

These data demonstrate the constitutive expression of a T lymphocyte regulatory molecule in differentiated human airway epithelial cells that is not modulated by Th2-associated cytokines.

【 授权许可】

   
2013 White et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705232514332.pdf 2966KB PDF download
Figure 6. 79KB Image download
Figure 5. 308KB Image download
Figure 4. 55KB Image download
Figure 3. 35KB Image download
Figure 2. 332KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1](EPR3) EPR: Guidelines for the Diagnosis and Management of Asthma. National Heart Lung and Blood Institute: Bethesda; 2007.
  • [2]Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, Williams H: Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006, 368:733-743.
  • [3]Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins JV, Irani AM, Schwartz LB, Durham SR, Jeffery PK, Kay AB: Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 1991, 88:661-674.
  • [4]Carroll N, Cooke C, James A: The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur Respir J 1997, 10:292-300.
  • [5]Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB: Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992, 326:298-304.
  • [6]Huang SK, Xiao HQ, Kleine-Tebbe J, Paciotti G, Marsh DG, Lichtenstein LM, Liu MC: IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol 1995, 155:2688-2694.
  • [7]Chen W, Hunninghake GW: Effects of ragweed and Th-2 cytokines on the secretion of IL-8 in human airway epithelial cells. Exp Lung Res 2000, 26:229-239.
  • [8]Kobayashi I, Yamamoto S, Nishi N, Tsuji K, Imayoshi M, Inada S, Ichiamaru T, Hamasaki Y: Regulatory mechanisms of Th2 cytokine-induced eotaxin-3 production in bronchial epithelial cells: possible role of interleukin 4 receptor and nuclear factor-kappaB. Ann Allergy Asthma Immunol 2004, 93:390-397.
  • [9]Nakamura Y, Azuma M, Okano Y, Sano T, Takahashi T, Ohmoto Y, Sone S: Upregulatory effects of interleukin-4 and interleukin-13 but not interleukin-10 on granulocyte/macrophage colony-stimulating factor production by human bronchial epithelial cells. Am J Respir Cell Mol Biol 1996, 15:680-687.
  • [10]van Wetering S, Zuyderduyn S, Ninaber DK, van Sterkenburg MA, Rabe KF, Hiemstra PS: Epithelial differentiation is a determinant in the production of eotaxin-2 and −3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol Immunol 2007, 44:803-811.
  • [11]Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR, et al.: Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 1997, 27:3507-3516.
  • [12]Rankin JA, Picarella DE, Geba GP, Temann UA, Prasad B, DiCosmo B, Tarallo A, Stripp B, Whitsett J, Flavell RA: Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci U S A 1996, 93:7821-7825.
  • [13]Vignola AM, Chanez P, Chiappara G, Merendino A, Pace E, Rizzo A, la Rocca AM, Bellia V, Bonsignore G, Bousquet J: Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med 1997, 156:591-599.
  • [14]Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999, 103:779-788.
  • [15]Geraghty DE, Koller BH, Orr HT: A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci U S A 1987, 84:9145-9149.
  • [16]Fujii T, Ishitani A, Geraghty DE: A soluble form of the HLA-G antigen is encoded by a messenger ribonucleic acid containing intron 4. J Immunol 1994, 153:5516-5524.
  • [17]Ishitani A, Geraghty DE: Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci U S A 1992, 89:3947-3951.
  • [18]Hunt JS, Petroff MG, McIntire RH, Ober C: HLA-G and immune tolerance in pregnancy. FASEB J 2005, 19:681-693.
  • [19]Rouas-Freiss N, Naji A, Durrbach A, Carosella ED: Tolerogenic functions of human leukocyte antigen G: from pregnancy to organ and cell transplantation. Transplantation 2007, 84:S21-25.
  • [20]Hviid TV: HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update 2006, 12:209-232.
  • [21]Carosella ED, Moreau P, Lemaoult J, Rouas-Freiss N: HLA-G: from biology to clinical benefits. Trends Immunol 2008, 29:125-132.
  • [22]Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C, Kuldanek S, Donfack J, Kogut P, Patel NM, et al.: Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005, 76:349-357.
  • [23]Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C: Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007, 81:829-834.
  • [24]Tahan F, Patiroglu T: Plasma soluble human leukocyte antigen G levels in asthmatic children. Int Arch Allergy Immunol 2006, 141:213-216.
  • [25]Zheng XQ, Li CC, Xu DP, Lin A, Bao WG, Yang GS, Yan WH: Analysis of the plasma soluble human leukocyte antigen-G and interleukin-10 levels in childhood atopic asthma. Hum Immunol 2010, 71:982-987.
  • [26]White SR, Loisel DA, McConville JF, Stern R, Tu Y, Marroquin BA, Noth I, Ober C: Levels of soluble human leukocyte antigen-G are increased in asthmatic airways. Eur Respir J 2010, 35:925-927.
  • [27]Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J, Angman L, Cella M, Lopez-Botet M: A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 1997, 186:1809-1818.
  • [28]Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O'Callaghan CA, Dunbar R, Ogg GS, Cerundolo V, Rolink A: Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 1998, 160:3096-3100.
  • [29]Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan DS, Makadzange A, Rowland-Jones S, Willcox B, et al.: Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A 2003, 100:8856-8861.
  • [30]Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED: HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol 2001, 166:5018-5026.
  • [31]Lila N, Rouas-Freiss N, Dausset J, Carpentier A, Carosella ED: Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A 2001, 98:12150-12155.
  • [32]Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S, Puppo F: Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 2003, 33:125-134.
  • [33]Naji A, Le Rond S, Durrbach A, Krawice-Radanne I, Creput C, Daouya M, Caumartin J, LeMaoult J, Carosella ED, Rouas-Freiss N: CD3+CD4low and CD3+CD8low are induced by HLA-G: novel human peripheral blood suppressor T-cell subsets involved in transplant acceptance. Blood 2007, 110:3936-3948.
  • [34]Kanai T, Fujii T, Unno N, Yamashita T, Hyodo H, Miki A, Hamai Y, Kozuma S, Taketani Y: Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol 2001, 45:94-99.
  • [35]Tomita K, Lim S, Hanazawa T, Usmani O, Stirling R, Chung KF, Barnes PJ, Adcock IM: Attenuated production of intracellular IL-10 and IL-12 in monocytes from patients with severe asthma. Clin Immunol 2002, 102:258-266.
  • [36]Rizzo R, Mapp CE, Melchiorri L, Maestrelli P, Visentin A, Ferretti S, Bononi I, Miotto D, Baricordi OR: Defective production of soluble HLA-G molecules by peripheral blood monocytes in patients with asthma. J Allergy Clin Immunol 2005, 115:508-513.
  • [37]Kim KW, Lee KE, Hong JY, Kim MN, Heo WI, Sohn MH, Kim KE: Involvement of IL-10 gene promoter polymorphisms in the susceptibility for childhood asthma. Lung 2011, 189:417-423.
  • [38]Karjalainen J, Hulkkonen J, Nieminen MM, Huhtala H, Aromaa A, Klaukka T, Hurme M: Interleukin-10 gene promoter region polymorphism is associated with eosinophil count and circulating immunoglobulin E in adult asthma. Clin Exp Allergy 2003, 33:78-83.
  • [39]White SR, Fischer BM, Marroquin BA, Stern R: Interleukin-1{beta} mediates human airway epithelial cell migration via NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol 2008, 295:L1018-1027.
  • [40]White SR, Martin LD, Abe MK, Marroquin BA, Stern R, Fu X: Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009, 297:L164-173.
  • [41]Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD, Strieter RM: Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 2006, 176:1916-1927.
  • [42]Voynow JA, Fischer BM, Roberts BC, Proia AD: Basal-like cells constitute the proliferating cell population in cystic fibrosis airways. Am J Respir Crit Care Med 2005, 172:1013-1018.
  • [43]Bernacki SH, Nelson AL, Abdullah L, Sheehan JK, Harris A, Davis CW, Randell SH: Mucin gene expression during differentiation of human airway epithelia in vitro. Muc4 and muc5b are strongly induced. Am J Respir Cell Mol Biol 1999, 20:595-604.
  • [44]Lopez-Ferrer A, Curull V, Barranco C, Garrido M, Lloreta J, Real FX, de Bolos C: Mucins as differentiation markers in bronchial epithelium. Squamous cell carcinoma and adenocarcinoma display similar expression patterns. Am J Respir Cell Mol Biol 2001, 24:22-29.
  • [45]Krunkosky TM, Jordan JL, Chambers E, Krause DC: Mycoplasma pneumoniae host-pathogen studies in an air-liquid culture of differentiated human airway epithelial cells. Microb Pathog 2007, 42:98-103.
  • [46]White SR, Tse R, Marroquin BA: Stress-activated protein kinases mediate cell migration in human airway epithelial cells. Am J Respir Cell Mol Biol 2005, 32:301-310.
  • [47]Chu W, Yang Y, Geraghty DE, Hunt JS: Interferons enhance HLA-G mRNA and protein in transfected mouse fibroblasts. J Reprod Immunol 1999, 42:1-15.
  • [48]Lefebvre S, Berrih-Aknin S, Adrian F, Moreau P, Poea S, Gourand L, Dausset J, Carosella ED, Paul P: A specific interferon (IFN)-stimulated response element of the distal HLA-G promoter binds IFN-regulatory factor 1 and mediates enhancement of this nonclassical class I gene by IFN-beta. J Biol Chem 2001, 276:6133-6139.
  • [49]Yamamoto S, Kobayashi I, Tsuji K, Nishi N, Muro E, Miyazaki M, Zaitsu M, Inada S, Ichimaru T, Hamasaki Y: Upregulation of interleukin-4 receptor by interferon-gamma: enhanced interleukin-4-induced eotaxin-3 production in airway epithelium. Am J Respir Cell Mol Biol 2004, 31:456-462.
  • [50]Matsukura S, Stellato C, Georas SN, Casolaro V, Plitt JR, Miura K, Kurosawa S, Schindler U, Schleimer RP, Stellato C, et al.: Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a STAT6-dependent mechanism. Am J Respir Cell Mol Biol 2001, 24:755-761.
  • [51]Lim S, Caramori G, Tomita K, Jazrawi E, Oates T, Chung KF, Barnes PJ, Adcock IM: Differential expression of IL-10 receptor by epithelial cells and alveolar macrophages. Allergy 2004, 59:505-514.
  • [52]Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M: The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 2004, 15:61-76.
  • [53]Murray PJ: The JAK-STAT signaling pathway: input and output integration. J Immunol 2007, 178:2623-2629.
  • [54]Finbloom DS, Winestock KD: IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 1995, 155:1079-1090.
  • [55]Weber-Nordt RM, Riley JK, Greenlund AC, Moore KW, Darnell JE, Schreiber RD: Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J Biol Chem 1996, 271:27954-27961.
  • [56]Lai CF, Ripperger J, Morella KK, Jurlander J, Hawley TS, Carson WE, Kordula T, Caligiuri MA, Hawley RG, Fey GH, Baumann H: Receptors for interleukin (IL)-10 and IL-6-type cytokines use similar signaling mechanisms for inducing transcription through IL-6 response elements. J Biol Chem 1996, 271:13968-13975.
  • [57]Wehinger J, Gouilleux F, Groner B, Finke J, Mertelsmann R, Weber-Nordt RM: IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. FEBS Lett 1996, 394:365-370.
  • [58]Carosella ED, HoWangYin KY, Favier B, LeMaoult J: HLA-G-dependent suppressor cells: Diverse by nature, function, and significance. Hum Immunol 2008, 69:700-707.
  • [59]Lee JH, Yu HH, Wang LC, Yang YH, Lin YT, Chiang BL: The levels of CD4+CD25+ regulatory T cells in paediatric patients with allergic rhinitis and bronchial asthma. Clin Exp Immunol 2007, 148:53-63.
  • [60]Fujisawa T, Kato Y, Atsuta J, Terada A, Iguchi K, Kamiya H, Yamada H, Nakajima T, Miyamasu M, Hirai K: Chemokine production by the BEAS-2B human bronchial epithelial cells: differential regulation of eotaxin, IL-8, and RANTES by TH2- and TH1-derived cytokines. J Allergy Clin Immunol 2000, 105:126-133.
  • [61]Lordan JL, Bucchieri F, Richter A, Konstantinidis A, Holloway JW, Thornber M, Puddicombe SM, Buchanan D, Wilson SJ, Djukanovic R, et al.: Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol 2002, 169:407-414.
  • [62]Propst SM, Denson R, Rothstein E, Estell K, Schwiebert LM: Proinflammatory and Th2-derived cytokines modulate CD40-mediated expression of inflammatory mediators in airway epithelia: implications for the role of epithelial CD40 in airway inflammation. J Immunol 2000, 165:2214-2221.
  • [63]Atherton HC, Jones G, Danahay H: IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung Cell Mol Physiol 2003, 285:L730-739.
  • [64]McIntire RH, Morales PJ, Petroff MG, Colonna M, Hunt JS: Recombinant HLA-G5 and -G6 drive U937 myelomonocytic cell production of TGF-beta1. J Leukoc Biol 2004, 76:1220-1228.
  文献评价指标  
  下载次数:11次 浏览次数:12次