期刊论文详细信息
Neural Development
Retinoic acid regulates olfactory progenitor cell fate and differentiation
Raj K Ladher2  Pascal Dollé1  Valérie Fraulob1  Monika Rataj-Baniowska1  Siu-Shan Mak2  Yoko Matsuoka2  Yuko Muta2  Laura Cammas1  Marie Paschaki1 
[1] Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, U 964 INSERM, Université de Strasbourg, B.P. 10142, 67404, Illkirch Cedex, France;Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
关键词: Stem cells;    Sensory systems;    Retinoid signaling;    RALDH;    Neuronal differentiation;    Olfactory neurons;   
Others  :  804504
DOI  :  10.1186/1749-8104-8-13
 received in 2013-02-06, accepted in 2013-05-29,  发布年份 2013
PDF
【 摘 要 】

Background

In order to fulfill their chemosensory function, olfactory neurons are in direct contact with the external environment and are therefore exposed to environmental aggressive factors. Olfaction is maintained through life because, unlike for other sensory neuroepithelia, olfactory neurons have a unique capacity to regenerate after trauma. The mechanisms that control the ontogenesis and regenerative ability of these neurons are not fully understood. Here, we used various experimental approaches in two model systems (chick and mouse) to assess the contribution of retinoic acid signaling in the induction of the olfactory epithelium, the generation and maintenance of progenitor populations, and the ontogenesis and differentiation of olfactory neurons.

Results

We show that retinoic acid signaling, although dispensable for initial induction of the olfactory placode, plays a key role in neurogenesis within this neuroepithelium. Retinoic acid depletion in the olfactory epithelium, both in chick and mouse models, results in a failure of progenitor cell maintenance and, consequently, differentiation of olfactory neurons is not sustained. Using an explant system, we further show that renewal of olfactory neurons is hindered if the olfactory epithelium is unable to synthesize retinoic acid.

Conclusions

Our data show that retinoic acid is not a simple placodal inductive signal, but rather controls olfactory neuronal production by regulating the fate of olfactory progenitor cells. Retinaldehyde dehydrogenase 3 (RALDH3) is the key enzyme required to generate retinoic acid within the olfactory epithelium.

【 授权许可】

   
2013 Paschaki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708062418778.pdf 2939KB PDF download
20140827195712787.pdf 384KB PDF download
Figure 4. 193KB Image download
Figure 3. 193KB Image download
Figure 2. 169KB Image download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Cau E, Casarosa S, Guillemot F: Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 2002, 129:1871-1880.
  • [2]Murray RC, Navi D, Fesenko J, Lander AD, Calof AL: Widespread defects in the primary olfactory pathway caused by loss of Mash1 function. J Neurosci 2003, 23:1769-1780.
  • [3]Gokoffski KK, Kawauchi S, Wu HH, Santos R, Hollenbeck PLW, Lander AD, Calof AL: Feedback regulation of neurogenesis in the mammalian olfactory epithelium: new insights from genetics and systems biology. In The Neurobiology of Olfaction. Edited by Menini A. Boca Raton, FL: CRC Press; 2010.
  • [4]Shetty RS, Bose SC, Nickell MD, McIntyre JC, Hardin DH, Harris AM, McClintock TS: Transcriptional changes during neuronal death and replacement in the olfactory epithelium. Mol Cell Neurosci 2005, 30:583-600.
  • [5]Gokoffski KK, Wu HH, Beites CL, Kim J, Kim EJ, Matzuk MM, Johnson JE, Lander AD, Calof AL: Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development 2011, 138:4131-4142.
  • [6]Rhinn M, Dolle P: Retinoic acid signalling during development. Development 2012, 139:843-858.
  • [7]Niederreither K, Dolle P: Retinoic acid in development: towards an integrated view. Nat Rev Genet 2008, 9:541-553.
  • [8]Duester G: Retinoic acid synthesis and signaling during early organogenesis. Cell 2008, 134:921-931.
  • [9]Balmer JE, Blomhoff R: Gene expression regulation by retinoic acid. J Lipid Res 2002, 43:1773-1808.
  • [10]LaMantia AS, Bhasin N, Rhodes K, Heemskerk J: Mesenchymal/epithelial induction mediates olfactory pathway formation. Neuron 2000, 28:411-425.
  • [11]Bhasin N, Maynard TM, Gallagher PA, LaMantia AS: Mesenchymal/epithelial regulation of retinoic acid signaling in the olfactory placode. Dev Biol 2003, 261:82-98.
  • [12]Baker CV, Bronner-Fraser M: Vertebrate cranial placodes I. Embryonic induction. Dev Biol 2001, 232:1-61.
  • [13]Schlosser G: Making senses development of vertebrate cranial placodes. Int Rev Cell Mol Biol 2010, 283:129-234.
  • [14]Whitlock KE: A new model for olfactory placode development. Brain Behav Evol 2004, 64:126-140.
  • [15]Wagner E, McCaffery P, Drager UC: Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev Biol 2000, 222:460-470.
  • [16]Li H, Wagner E, McCaffery P, Smith D, Andreadis A, Drager UC: A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech Dev 2000, 95:283-289.
  • [17]Mic FA, Molotkov A, Fan X, Cuenca AE, Duester G: RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development. Mech Dev 2000, 97:227-230.
  • [18]Vermot J, Pourquie O: Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 2005, 435:215-220.
  • [19]Kawauchi S, Shou J, Santos R, Hebert JM, McConnell SK, Mason I, Calof AL: Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 2005, 132:5211-5223.
  • [20]del Corral RD, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K: Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 2003, 40:65-79.
  • [21]Sirbu IO, Duester G: Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat Cell Biol 2006, 8:271-277.
  • [22]Sirbu IO, Zhao X, Duester G: Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway. Dev Dyn 2008, 237:1627-1635.
  • [23]Kaufman MH, Bard JBL: The Anatomical Basis of Mouse Development. San Diego, CA: Academic Press; 1999.
  • [24]Kawauchi S, Beites CL, Crocker CE, Wu HH, Bonnin A, Murray R, Calof AL: Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci 2004, 26:166-180.
  • [25]Niederreither K, Fraulob V, Garnier JM, Chambon P, Dolle P: Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech Dev 2002, 110:165-171.
  • [26]Peluso CE, Jang W, Drager U, Schwob JE: Differential expression of components of the retinoic acid signaling pathway in the adult mouse olfactory epithelium. J Comp Neurol 2012, 520(16):3707-3726.
  • [27]Blentic A, Gale E, Maden M: Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev Dyn 2003, 227:114-127.
  • [28]Dupe V, Matt N, Garnier JM, Chambon P, Mark M, Ghyselinck NB: A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci U S A 2003, 100:14036-14041.
  • [29]LaMantia AS, Colbert MC, Linney E: Retinoic acid induction and regional differentiation prefigure olfactory pathway formation in the mammalian forebrain. Neuron 1993, 10:1035-1048.
  • [30]Illing N, Boolay S, Siwoski JS, Casper D, Lucero MT, Roskams AJ: Conditionally immortalized clonal cell lines from the mouse olfactory placode differentiate into olfactory receptor neurons. Mol Cell Neurosci 2002, 20:225-243.
  • [31]Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL: Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 1993, 75:463-476.
  • [32]Collinson JM, Quinn JC, Hill RE, West JD: The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol 2003, 255:303-312.
  • [33]Guo Z, Packard A, Krolewski RC, Harris MT, Manglapus GL, Schwob JE: Expression of pax6 and sox2 in adult olfactory epithelium. J Comp Neurol 2010, 518:4395-4418.
  • [34]Brazel CY, Rao MS: Aging and neuronal replacement. Ageing Res Rev 2004, 3:465-483.
  • [35]Maier E, Nord H, von Hofsten J, Gunhaga L: A balance of BMP and notch activity regulates neurogenesis and olfactory nerve formation. PLoS One 2011, 6:e17379.
  • [36]Schwarting GA, Gridley T, Henion TR: Notch1 expression and ligand interactions in progenitor cells of the mouse olfactory epithelium. J Mol Histol 2007, 38:543-553.
  • [37]Sabado V, Barraud P, Baker CV, Streit A: Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling. Dev Biol 2012, 362:254-262.
  • [38]Maden M, Hind M: Retinoic acid, a regeneration-inducing molecule. Dev Dyn 2003, 226:237-244.
  • [39]Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD: Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 2011, 20:397-404.
  • [40]Wong LF, Yip PK, Battaglia A, Grist J, Corcoran J, Maden M, Azzouz M, Kingsman SM, Kingsman AJ, Mazarakis ND, McMahon SB: Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 2006, 9:243-250.
  • [41]Hamburger V, Hamilton HL: A series of normal stages in the development of the chicken embryo. J Morphol 1951, 88:49-92.
  • [42]Chapman SC, Collignon J, Schoenwolf GC, Lumsden A: Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 2001, 220:284-289.
  • [43]Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour SL: Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 2004, 269:264-275.
  • [44]Ladher RK, Anakwe KU, Gurney AL, Schoenwolf GC, Francis-West PH: Identification of synergistic signals initiating inner ear development. Science 2000, 290:1965-1967.
  • [45]Brown ST, Wang J, Groves AK: Dlx gene expression during chick inner ear development. J Comp Neurol 2005, 483:48-65.
  • [46]Teraoka ME, Paschaki M, Muta Y, Ladher RK: Rostral paraxial mesoderm regulates refinement of the eye field through the bone morphogenetic protein (BMP) pathway. Dev Biol 2009, 330:389-398.
  • [47]Crossley PH, Minowada G, MacArthur CA, Martin GR: Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 1996, 84:127-136.
  • [48]Depew MJ, Liu JK, Long JE, Presley R, Meneses JJ, Pedersen RA, Rubenstein JL: Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 1999, 126:3831-3846.
  • [49]Halilagic A, Zile MH, Studer M: A novel role for retinoids in patterning the avian forebrain during presomite stages. Development 2003, 130:2039-2050.
  文献评价指标  
  下载次数:173次 浏览次数:79次