期刊论文详细信息
Virology Journal
Construction and in vitro evaluation of a recombinant live attenuated PRRSV expressing GM-CSF
Guangzhi Tong1  Qun Cheng2  Tianqi Xia2  Liwei Li2  Kang Wang2  Fei Gao2  Shen Yang2  Wu Tong2  Yifeng Jiang1  Yanjun Zhou1  Lingxue Yu2 
[1] Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China;Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, Minhang District, China
关键词: BMDCs;    GM-CSF;    PRRSV;   
Others  :  1131088
DOI  :  10.1186/s12985-014-0201-4
 received in 2014-08-31, accepted in 2014-11-08,  发布年份 2014
PDF
【 摘 要 】

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be an important problem for the swine industry. Inactivated vaccines and modified-live virus vaccines are widely used in the field; however, the efficacy of these PRRSV vaccines is suboptimal due to poor immunogenicity. Granulocyte–macrophage colony stimulating factor (GM-CSF) has been extensively used as an effective genetic and protein adjuvant to enhance the efficiencies vaccines expressing tumor or pathogen antigens. The purpose of this study was to determine if GM-CSF could increase the efficiency of PRRSV vaccine.

Methods

The GM-CSF gene was inserted in the HuN4-F112 vaccine strain by overlap PCR. The expression of GM-CSF by the recombinant virus was confirmed with methods of indirect immunofluorescent assay (IFA) and Western blotting. The stability of recombinant virus was assessed by cDNA sequence and IFA after 20 passages. To detect the biological activity of GM-CSF expressed by the recombinant virus, bone marrow-derived dendritic cells (BMDCs) were isolated and co-cultured with the recombinant virus or parental virus and the surface phenotypes of BMDCs were examined by flow cytometric analysis. The cytokines secreted by BMDCs infected with PRRSV, or treated with LPS, GM-CSF or medium alone were evaluated by ProcartaPlexTM Multiplex Immunoassays and qRT-PCR.

Results

A novel modified-live PRRSV vaccine strain expressing GM-CSF (rHuN4-GM-CSF) was successfully constructed and rescued. The GM-CSF protein was stable expressed in recombinant virus-infected cells after 20 passages. Analysis of virus replication kinetics showed that the novel vaccine strain expressing GM-CSF had a similar replication rate as the parental virus. In vitro studies showed that infection of porcine BMDCs with rHuN4-GM-CSF resulted in increased surface expression of MHCI+, MHCII + and CD80/86+ that was dependent on virus expressed GM-CSF. The expression of representative cytokines was significantly up-regulated when BMDCs were incubated with the recombinant GM-CSF expressing virus.

Conclusions

Our results indicated that the expression of GM-CSF during infection with a vaccine strain could enhance the activation of BMDCs and increase cytokine response, which is expected to result in higher immune responses and may improve vaccine efficacy against PRRSV infection.

【 授权许可】

   
2014 Yu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150301005825392.pdf 1769KB PDF download
Figure 7. 33KB Image download
Figure 6. 48KB Image download
Figure 5. 30KB Image download
Figure 4. 40KB Image download
Figure 3. 42KB Image download
Figure 2. 55KB Image download
Figure 1. 11KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Cavanagh D: Nidovirales: a new order comprising coronaviridae and arteriviridae. Arch Virol 1997, 142:629-633.
  • [2]Larochelle R, Magar R: Evaluation of the presence of porcine reproductive and respiratory syndrome virus in packaged pig meat using virus isolation and polymerase chain reaction (PCR) method. Vet Microbiol 1997, 58:1-8.
  • [3]Sang Y, Rowland RR, Blecha F: Antiviral regulation in porcine monocytic cells at different activation states. J Virol 2014, 88:11395-11410.
  • [4]Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF: Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2007, 2:e526.
  • [5]Li Y, Wang X, Bo K, Wang X, Tang B, Yang B, Jiang W, Jiang P: Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet J 2007, 174:577-584.
  • [6]Tong GZ, Zhou YJ, Hao XF, Tian ZJ, An TQ, Qiu HJ: Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis 2007, 13:1434-1436.
  • [7]Leng X, Li Z, Xia M, He Y, Wu H: Evaluation of the efficacy of an attenuated live vaccine against highly pathogenic porcine reproductive and respiratory syndrome virus in young pigs. Clin Vaccine Immunol 2012, 19:1199-1206.
  • [8]Han W, Wu JJ, Deng XY, Cao Z, Yu XL, Wang CB, Zhao TZ, Chen NH, Hu HH, Bin W, Hou LL, Wang LL, Tian KG, Zhang ZQ: Molecular mutations associated with the in vitro passage of virulent porcine reproductive and respiratory syndrome virus. Virus Genes 2009, 38:276-284.
  • [9]Tian ZJ, An TQ, Zhou YJ, Peng JM, Hu SP, Wei TC, Jiang YF, Xiao Y, Tong GZ: An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects piglets against HP-PRRS. Vet Microbiol 2009, 138:34-40.
  • [10]Botner A, Strandbygaard B, Sorensen KJ, Have P, Madsen KG, Madsen ES, Alexandersen S: Appearance of acute PRRS-like symptoms in sow herds after vaccination with a modified live PRRS vaccine. Vet Rec 1997, 141:497-499.
  • [11]Charerntantanakul W, Platt R, Johnson W, Roof M, Vaughn E, Roth JA: Immune responses and protection by vaccine and various vaccine adjuvant candidates to virulent porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2006, 109:99-115.
  • [12]Foss DL, Zilliox MJ, Meier W, Zuckermann F, Murtaugh MP: Adjuvant danger signals increase the immune response to porcine reproductive and respiratory syndrome virus. Viral Immunol 2002, 15:557-566.
  • [13]Meier WA, Husmann RJ, Schnitzlein WM, Osorio FA, Lunney JK, Zuckermann FA: Cytokines and synthetic double-stranded RNA augment the T helper 1 immune response of swine to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2004, 102:299-314.
  • [14]Wen Y, Wang H, Wu H, Yang F, Tripp RA, Hogan RJ, Fu ZF: Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. J Virol 2011, 85:1634-1644.
  • [15]Lawson SR, Li Y, Patton JB, Langenhorst RJ, Sun Z, Jiang Z, Christopher-Hennings J, Nelson EA, Knudsen D, Fang Y, Chang KO: Interleukin-1beta expression by a recombinant porcine reproductive and respiratory syndrome virus. Virus Res 2012, 163:461-468.
  • [16]Wanjalla CN, Goldstein EF, Wirblich C, Schnell MJ: A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8(+) T cell responses to rabies virus. Virology 2012, 426:120-133.
  • [17]Zhan Y, Xu Y, Lew AM: The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol Immunol 2012, 52:30-37.
  • [18]Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998, 188:373-386.
  • [19]Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992, 176:1693-1702.
  • [20]Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993, 90:3539-3543.
  • [21]Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC, Lillemoe KD, O’Reilly S, Abrams RA, Pardoll DM, Cameron JL, Yeo CJ: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001, 19:145-156.
  • [22]Kass E, Parker J, Schlom J, Greiner JW: Comparative studies of the effects of recombinant GM-CSF and GM-CSF administered via a poxvirus to enhance the concentration of antigen- presenting cells in regional lymph nodes. Cytokine 2000, 12:960-971.
  • [23]Luiten RM, Kueter EW, Mooi W, Gallee MP, Rankin EM, Gerritsen WR, Clift SM, Nooijen WJ, Weder P, van de Kasteele WF, Sein J, van den Berk PC, Nieweg OE, Berns AM, Spits H, de Gast GC: Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005, 23:8978-8991.
  • [24]Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, Kovatich AJ, Lattime EC: Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 1999, 6:409-422.
  • [25]Ramsburg E, Publicover J, Buonocore L, Poholek A, Robek M, Palin A, Rose JK: A vesicular stomatitis virus recombinant expressing granulocyte-macrophage colony-stimulating factor induces enhanced T-cell responses and is highly attenuated for replication in animals. J Virol 2005, 79:15043-15053.
  • [26]Pei Y, Hodgins DC, Wu J, Welch SK, Calvert JG, Li G, Du Y, Song C, Yoo D: Porcine reproductive and respiratory syndrome virus as a vector: immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs. Virology 2009, 389:91-99.
  • [27]Groot Bramel-Verheije MH, Rottier PJ, Meulenberg JJ: Expression of a foreign epitope by porcine reproductive and respiratory syndrome virus. Virology 2000, 278:380-389.
  • [28]Zheng H, Sun Z, Zhu XQ, Long J, Lu J, Lv J, Yuan S: Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus. Virus Res 2010, 148:8-16.
  • [29]Fang Y, Rowland RR, Roof M, Lunney JK, Christopher-Hennings J, Nelson EA: A full-length cDNA infectious clone of north American type 1 porcine reproductive and respiratory syndrome virus: expression of green fluorescent protein in the Nsp2 region. J Virol 2006, 80:11447-11455.
  • [30]Han J, Liu G, Wang Y, Faaberg KS: Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J Virol 2007, 81:9878-9890.
  • [31]Kim DY, Calvert JG, Chang KO, Horlen K, Kerrigan M, Rowland RR: Expression and stability of foreign tags inserted into nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res 2007, 128:106-114.
  • [32]Becker Y: Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells–a review. Virus Genes 2003, 26:119-130.
  • [33]Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245-252.
  • [34]Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S, Takamatsu H, Bertoni G, McCullough KC, Summerfield A: Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001, 104:175-184.
  • [35]Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 2000, 18:767-811.
  • [36]Flutter B, Gao B: MHC class I antigen presentation–recently trimmed and well presented. Cell Mol Immunol 2004, 1:22-30.
  • [37]Chang HC, Peng YT, Chang HL, Chaung HC, Chung WB: Phenotypic and functional modulation of bone marrow-derived dendritic cells by porcine reproductive and respiratory syndrome virus. Vet Microbiol 2008, 129:281-293.
  • [38]Huang LY, Reis e Sousa C, Itoh Y, Inman J, Scott DE: IL-12 induction by a TH1-inducing adjuvant in vivo: dendritic cell subsets and regulation by IL-10. J Immunol 2001, 167:1423-1430.
  • [39]Foss DL, Zilliox MJ, Murtaugh MP: Differential regulation of macrophage interleukin-1 (IL-1), IL-12, and CD80-CD86 by two bacterial toxins. Infect Immun 1999, 67:5275-5281.
  • [40]Raymond CR, Sidahmed AM, Wilkie BN: Effects of antigen and recombinant porcine cytokines on pig dendritic cell cytokine expression in vitro. Vet Immunol Immunopathol 2006, 111:175-185.
  • [41]Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003, 3:133-146.
  • [42]Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G, Romagnani S: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993, 177:1199-1204.
  • [43]Carter QL, Curiel RE: Interleukin-12 (IL-12) ameliorates the effects of porcine respiratory and reproductive syndrome virus (PRRSV) infection. Vet Immunol Immunopathol 2005, 107:105-118.
  • [44]Domeika K, Berg M, Eloranta ML, Alm GV: Porcine interleukin-12 fusion protein and interleukin-18 in combination induce interferon-gamma production in porcine natural killer and T cells. Vet Immunol Immunopathol 2002, 86:11-21.
  • [45]Foss DL, Moody MD, Murphy KP Jr, Pazmany C, Zilliox MJ, Murtaugh MP: In vitro and in vivo bioactivity of single-chain interleukin-12. Scand J Immunol 1999, 50:596-604.
  • [46]Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA: Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol 2001, 75:3501-3508.
  • [47]Hahm B: Hostile communication of measles virus with host innate immunity and dendritic cells. Curr Top Microbiol Immunol 2009, 330:271-287.
  • [48]Zhang S, Zhou Y, Jiang Y, Li G, Yan L, Yu H, Tong G: Generation of an infectious clone of HuN4-F112, an attenuated live vaccine strain of porcine reproductive and respiratory syndrome virus. Virol J 2011, 8:410. BioMed Central Full Text
  • [49]Zhou YJ, Hao XF, Tian ZJ, Tong GZ, Yoo D, An TQ, Zhou T, Li GX, Qiu HJ, Wei TC, Yuan XF: Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transbound Emerg Dis 2008, 55:152-164.
  • [50]Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G: An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999, 223:77-92.
  文献评价指标  
  下载次数:10次 浏览次数:4次