期刊论文详细信息
Movement Ecology
Foraging behavior links climate variability and reproduction in North Pacific albatrosses
Scott A. Shaffer1  Yann Tremblay3  Daniel P. Costa4  Hyemi M. Kim7  Michelle A. Kappes4  Melinda G. Conners6  David G. Foley5  Steven J. Bograd2  Elliott L. Hazen5  Lesley H. Thorne7 
[1] Institute of Marine Sciences, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz 95060, CA, USA;Environmental Research Division, Southwest Fisheries Science Center, NOAA Fisheries, 99 Pacific St., Suite 255A, Monterey 93940, CA, USA;Institut de Recherche pour le Développement (IRD), Research Unit Marine Biodiversity, Exploitation and Conservation UMR248 MARBEC, Avenue Jean Monnet, Sète Cedex, CS 30171 - 34203, France;Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz 95060, CA, USA;Cooperative Institute for Marine Ecosystems and Climate, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz 95060, CA, USA;Department of Ocean Sciences, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz 95060, CA, USA;School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook 11790, NY, USA
关键词: Environmental variability;    Climate;    Reproductive success;    Movement;    Albatross;   
Others  :  1229061
DOI  :  10.1186/s40462-015-0050-9
 received in 2015-02-02, accepted in 2015-09-01,  发布年份 2015
【 摘 要 】

Background

Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting climate-driven changes in behavior to predator populations are not well understood. We evaluated the effects of climate-driven environmental variability on the reproductive success and foraging behavior of Laysan and Black-footed albatrosses breeding in the Northwest Hawaiian Islands during both brooding and incubating periods. We assessed foraging trip metrics and reproductive success using data collected from 2002–2012 and 1981–2012, respectively, relative to variability in the location of the Transition Zone Chlorophyll Front (TZCF, an important foraging region for albatrosses), sea surface temperature (SST), Multivariate ENSO Index (MEI), and the North Pacific Gyre Oscillation index (NPGO).

Results

Foraging behavior for both species was influenced by climatic and oceanographic factors. While brooding chicks, both species traveled farther during La Niña conditions, when NPGO was high and when the TZCF was farther north (farther from the breeding site). Models showed that reproductive success for both species showed similar trends, correlating negatively with conditions observed during La Niña events (low MEI, high SST, high NPGO, increased distance to TZCF), but models for Laysan albatrosses explained a higher proportion of the variation. Spatial correlations of Laysan albatross reproductive success and SST anomalies highlighted strong negative correlations (>95 %) between habitat use and SST. Higher trip distance and/or duration during brooding were associated with decreased reproductive success.

Conclusions

Our findings suggest that during adverse conditions (La Niña conditions, high NPGO, northward displacement of the TZCF), both Laysan and Black-footed albatrosses took longer foraging trips and/or traveled farther during brooding, likely resulting in a lower reproductive success due to increased energetic costs. Our results link climate variability with both albatross behavior and reproductive success, information that is critical for predicting how albatross populations will respond to future climate change.

【 授权许可】

   
2015 Thorne et al.

附件列表
Files Size Format View
Fig. 9. 14KB Image download
Fig. 8. 22KB Image download
Fig. 7. 156KB Image download
Fig. 6. 34KB Image download
Fig. 5. 60KB Image download
Fig. 4. 63KB Image download
Fig. 3. 21KB Image download
Fig. 2. 37KB Image download
Fig. 1. 85KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

【 参考文献 】
  • [1]Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F. Fishing down marine food webs. Science. 1998; 279(5352):860-3.
  • [2]Stirling I, Lunn NJ, Iacozza J. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic. 1999; 52:294-306.
  • [3]Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA. Collapse and conservation of shark populations in the Northwest Atlantic. Science. 2003; 299(5605):389-92.
  • [4]Lewison RL, Crowder LB, Read AJ, Freeman SA. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol Evol. 2004; 19(11):598-604.
  • [5]Williams TM, Estes JA, Doak DF, Springer AM. Killer appetites: assessing the role of predators in ecological communities. Ecology. 2004; 85(12):3373-84.
  • [6]Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science. 2007; 315(5820):1846-50.
  • [7]Heithaus MR, Frid A, Wirsing AJ, Worm B. Predicting ecological consequences of marine top predator declines. Trends Ecol Evol. 2008; 23(4):202-10.
  • [8]Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ et al.. Trophic downgrading of planet Earth. Science. 2011; 333(6040):301-6.
  • [9]Roman J, Estes JA, Morissette L, Smith C, Costa D, McCarthy J et al.. Whales as marine ecosystem engineers. Front Ecol Environ. 2014; 12(7):377-85.
  • [10]Hazen EL, Jorgensen S, Rykaczewski RR, Bograd SJ, Foley DG, Jonsen ID et al.. Predicted habitat shifts of Pacific top predators in a changing climate. Nat Clim Chang. 2013; 13(3):234-8.
  • [11]IPCC. 2007: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Reisinger, A.) (IPCC, 2007); available at www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf. 2007.
  • [12]Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science. 2010; 328(5985):1523-8.
  • [13]Péron C, Weimerskirch H, Bost C-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc Biol Sci. 2012; 279(1738):2515-23.
  • [14]Croxall JP, Trathan P, Murphy E. Environmental change and Antarctic seabird populations. Science. 2002; 297(5586):1510-4.
  • [15]Regehr EV, Hunter CM, Caswell H, Amstrup SC, Stirling I. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. J Anim Ecol. 2010; 79(1):117-27.
  • [16]Moore SE, Huntington HP. Arctic marine mammals and climate change: impacts and resilience. Ecol Appl. 2008; 18(sp2):S157-S65.
  • [17]Forcada J, Trathan PN. Penguin responses to climate change in the Southern Ocean. Glob Chang Biol. 2009; 15(7):1618-30.
  • [18]Inchausti P, Guinet C, Koudil M, Durbec JP, Barbraud C, Weimerskirch H et al.. Inter‐annual variability in the breeding performance of seabirds in relation to oceanographic anomalies that affect the Crozet and the Kerguelen sectors of the Southern Ocean. J Avian Biol. 2003; 34(2):170-6.
  • [19]Weimerskirch H, Louzao M, De Grissac S, Delord K. Changes in wind pattern alter albatross distribution and life-history traits. Science. 2012; 335(6065):211-4.
  • [20]Montevecchi W, Myers A. Dietary changes of seabirds indicate shifts in pelagic food webs. Sarsia. 1996; 80(4):313-22.
  • [21]Montevecchi W, Myers R. Centurial and decadal oceanographic influences on changes in northern gannet populations and diets in the north-west Atlantic: implications for climate change. ICES J Mar Sci. 1997; 54(4):608-14.
  • [22]Cairns D. Seabirds as indicators of marine food supplies. Biological Oceanography. 1988; 5(4):261-71.
  • [23]Piatt J, Sydeman W, Sydeman W, Piatt J, Browman H. Seabirds as indicators of marine ecosystems. Mar Ecol Prog Ser. 2007; 352:199.
  • [24]Costa D, Prince P. Foraging energetics of Grey‐headed Albatrosses Diotnedea chrysostoma at Bird Island, South Georgia. Ibis. 1987; 129(S1):149-58.
  • [25]Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa D. Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc Roy Soc Lond B Biol Sci. 2000; 267(1455):1869-74.
  • [26]Shaffer SA, Costa DP, Weimerskirch H. Behavioural factors affecting foraging effort of breeding wandering albatrosses. J Anim Ecol. 2001; 70(5):864-74.
  • [27]Weimerskirch H, Ancel A, Caloin M, Zahariev A, Spagiari J, Kersten M et al.. Foraging efficiency and adjustment of energy expenditure in a pelagic seabird provisioning its chick. J Anim Ecol. 2003; 72(3):500-8.
  • [28]Weimerskirch H, Salamolard M, Sarrazin F, Jouventin P. Foraging strategy of wandering albatrosses through the breeding season: a study using satellite telemetry. The Auk. 1993; 110:325-42.
  • [29]Hyrenbach KD, Fernández P, Anderson DJ. Oceanographic habitats of two sympatric North Pacific albatrosses during the breeding season. Mar Ecol Prog Ser. 2002; 233:283-301.
  • [30]Shaffer SA, Costa DP, Weimerskirch H. Foraging effort in relation to the constraints of reproduction in free‐ranging albatrosses. Functional Ecology. 2003; 17(1):66-74.
  • [31]Shaffer SA. Annual energy budget and food requirements of breeding wandering albatrosses (Diomedea exulans). Polar Biology. 2004; 27(4):253-6.
  • [32]Bevan R, Butler P, Woakes A, Prince P. The energy expenditure of free-ranging black-browed albatrosses. Philos Trans R Soc Lond B Biol Sci. 1995; 350(1332):119-31.
  • [33]Kappes MA, Shaffer SA, Tremblay Y, Foley DG, Palacios DM, Robinson PW et al.. Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific. Prog Oceanogr. 2010; 86(1):246-60.
  • [34]Wakefield ED, Phillips RA, Matthiopoulos J. Habitat-mediated population limitation in a colonial central-place forager: the sky is not the limit for the black-browed albatross. Proc Biol Sci. 2014; 281(1778):20132883.
  • [35]Polovina JJ, Howell E, Kobayashi DR, Seki MP. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Prog Oceanogr. 2001; 49(1):469-83.
  • [36]Baker JD, Polovina JJ, Howell EA. Effect of variable oceanic productivity on the survival of an upper trophic predator, the Hawaiian monk seal Monachus schauinslandi. Mar Ecol Prog Ser. 2007; 346:277-83.
  • [37]Bograd SJ, Foley DG, Schwing FB, Wilson C, Laurs RM, Polovina JJ et al.. On the seasonal and interannual migrations of the transition zone chlorophyll front. Geophys Res Lett. 2004; 31(17):L17204-17400.
  • [38]Antonelis GA, Baker JD, Polovina JJ. Improved body condition of weaned Hawaiian monk seal pups associated with El Niño events: Potential benefits to an endangered species. Mar Mamm Sci. 2003; 19(3):590-8.
  • [39]Polovina JJ, Dunne JP, Woodworth PA, Howell EA. Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci. 2011; 68(6):986-995.
  • [40]Fernandez P, Anderson DJ, Sievert PR, Huyvaert KP. Foraging destinations of three low-latitude albatross (Phoebastria) species. J Zool. 2001; 254(03):391-404.
  • [41]Whittow GC. The black-footed albatross (Diomedea nigripes). In: The birds of North America. Pooley A, Gill F, editors. The Academy of Natural Sciences, Philadelphia; 1983: p.1-16.
  • [42]Whittow GC. The Laysan albatross (Diomedea immutabilis). In: The birds of North America. Pooley A, Gill F, editors. The Academy of Natural Sciences, Philadelphia, PA; 1993: p.1-20.
  • [43]Arata JA, Sievert PR, Naughton MB. Status assessment of Laysan and black-footed albatrosses, North Pacific Ocean, 1923–2005. US Geological Survey Scientific Investigations Report. 2009;5131. 80 p.
  • [44]Fisher HI. The Laysan albatross: its incubation, hatching, and associated behaviors. Living Bird. 1971; 10:19-78.
  • [45]Fisher HI. Mortality and survival in the Laysan albatross, Diomedea immutabilis. Pac Sci. 1975; 29:279-300.
  • [46]Phillips RA, Xavier JC, Croxall JP, Burger A. Effects of satellite transmitters on albatrosses and petrels. The Auk. 2003; 120(4):1082-90.
  • [47]Flemming JM, Jonsen ID, Myers RA, Field CA. Hierarchical state-space estimation of leatherback turtle navigation ability. PLoS One. 2010; 5(12): Article ID e14245
  • [48]R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013. ISBN 3-900051-07-0, URL http://www. R-project.org/
  • [49]Di Lorenzo E, Cobb K, Furtado J, Schneider N, Anderson B, Bracco A et al.. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci. 2010; 3(11):762-5.
  • [50]Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A et al.. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett. 2008; 35(8): Article ID L08607
  • [51]Wolter K, Timlin MS. Measuring the strength of ENSO events: how does 1997/98 rank? Weather. 1998; 53(9):315-24.
  • [52]Shillinger GL, Bailey H, Bograd SJ, Hazen EL, Hamann M, Gaspar P et al.. Tagging through the stages: technical and ecological challenges in observing life histories through biologging. Mar Ecol Prog Ser. 2012; 457:165-70.
  • [53]McCullagh P, Nelder JA. Generalized linear models. Chapman and Hall, London; 1989.
  • [54]Engler R, Guisan A, Rechsteiner L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo‐absence data. J Appl Ecol. 2004; 41(2):263-74.
  • [55]Akaike H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika. 1973; 60(2):255-65.
  • [56]Burnham K, Anderson D. Model selection and inferences. Springer, New York; 1998.
  • [57]Chavez F, Pennington J, Castro C, Ryan J, Michisaki R, Schlining B et al.. Biological and chemical consequences of the 1997–1998 El Niño in central California waters. Prog Oceanogr. 2002; 54(1):205-32.
  • [58]Crocker DE, Costa DP, Le Boeuf BJ, Webb PM, Houser DS. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar Ecol Prog Ser. 2006;309.
  • [59]Lee DE, Nur N, Sydeman WJ. Climate and demography of the planktivorous Cassin’s auklet Ptychoramphus aleuticus off northern California: implications for population change. J Anim Ecol. 2007; 76(2):337-47.
  • [60]Guinet C, Chastel O, Koudil M, Durbec JP, Jouventin P. Effects of warm sea–surface temperature anomalies on the blue petrel at the Kerguelen Islands. Proc Roy Soc Lond B Biol Sci. 1998; 265(1400):1001-6.
  • [61]Peck DR, Smithers BV, Krockenberger AK, Congdon BC. Sea surface temperature constrains wedge-tailed shearwater foraging success within breeding seasons. Mar Ecol Prog Ser. 2004; 281:259-66.
  • [62]Weimerskirch H, Zimmermann L, Prince PA. Influence of environmental variability on breeding effort in a long-lived seabird, the yellow-nosed albatross. Behav Ecol. 2001; 12(1):22-30.
  • [63]Schwing F, Murphree T, Dewitt L, Green PM. The evolution of oceanic and atmospheric anomalies in the northeast Pacific during the El Niño and La Niña events of 1995–2001. Prog Oceanogr. 2002; 54(1):459-91.
  • [64]Suryan RM, Anderson DJ, Shaffer SA, Roby DD, Tremblay Y, Costa DP et al.. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses. PLoS One. 2008; 3(12): Article ID e4016
  • [65]Ballance LT, Pitman RL, Fiedler PC. Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: a review. Prog Oceanogr. 2006; 69(2):360-90.
  • [66]Becker BH, Peery M, Beissinger SR. Ocean climate and prey availability affect the trophic level and reproductive success of the marbled murrelet, an endangered seabird. Mar Ecol Prog Ser. 2007; 329:267-79.
  • [67]Frederiksen M, Edwards M, Mavor RA, Wanless S. Regional and annual variation in black-legged kittiwake breeding productivity is related to sea surface temperature. Mar Ecol Prog Ser. 2007; 350:137-43.
  • [68]Wolf SG, Sydeman WJ, Hipfner JM, Abraham CL, Tershy BR, Croll DA. Range-wide reproductive consequences of ocean climate variability for the seabird Cassin’s Auklet. Ecology. 2009; 90(3):742-53.
  文献评价指标  
  下载次数:8次 浏览次数:7次