| Molecular Neurodegeneration | |
| Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator | |
| Todd E. Golde4  Kevin M. Felsenstein4  Gideon Shapiro5  Edward H. Koo2  Saritha Ba1  Rajender Akula1  Yufei Tang3  Günther Hochhaus3  Lisa A. Smithson4  Carolina Ceballos-Diaz4  Hyo-Jin Park4  Yong Ran4  Thomas B. Ladd4  Ashleigh R. Price4  Joo In Jung4  | |
| [1] SAI Life Sciences Ltd., Turkapally AP500078, India;Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;College of Pharmacy, University of Florida, Gainesville 32610, FL, USA;McKnight Brain Institute, College of Medicine, University of Florida, Gainesville 32610, FL, USA;Pharmore, Inc., Gainesville 32653, FL, USA | |
| 关键词: Cytochrome P450; Bile acid; Steroid; Cholesterol; Alzheimer disease; Amyloid; γ-secretase modulator (GSM); Cholestenoic acid; | |
| Others : 1219845 DOI : 10.1186/s13024-015-0021-z |
|
| received in 2015-04-06, accepted in 2015-05-29, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Amyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer’s disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC 50 ) of 5.7 μM.
Results
We find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC 50of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1−/−) and Cyp7b1 knockout (Cyp7b1−/−) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1−/− had increased brain Aβ42, whereas Cyp7b1−/− mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency.
Conclusion
These data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished.
【 授权许可】
2015 Jung et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150719040558791.pdf | 1116KB | ||
| Fig. 6. | 52KB | Image | |
| Fig. 5. | 38KB | Image | |
| Fig. 4. | 27KB | Image | |
| Fig. 3. | 32KB | Image | |
| Fig. 2. | 38KB | Image | |
| Fig. 1. | 53KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Golde TE, Eckman CB, Younkin SG. Biochemical detection of Aβ isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim Biophys Acta. 2000; 1502(1):172-87.
- [2]Wang R, Sweeney D, Gandy SE, Sisodia SS. The Profile of Soluble Amyloid β Protein in Cultured Cell Media: detection and quantification of amyloid β protein and variants by immunoprecipitation-mass spectrometry. J Biol Chem. 1996; 271(50):31894-902.
- [3]Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L, Eckman C et al.. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science (New York, NY). 1994; 264(5163):1336-40.
- [4]Younkin S. The role of A beta 42 in Alzheimer's disease. J Physiol Paris. 1998; 92:289-92.
- [5]Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C et al.. Aβ40 Inhibits Amyloid Deposition In Vivo. J Neurosci. 2007; 27(3):627-33.
- [6]McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C et al.. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron. 2005; 47:191-9.
- [7]Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T et al.. Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo. Neuron. 1996; 17(5):1005-13.
- [8]Duff K, Eckman C, Zehr C, Yu X, Prada C-M, Perez-tur J et al.. Increased amyloid-[beta]42(43) in brains of mice expressing mutant presenilin 1. Nature. 1996; 383(6602):710-3.
- [9]Scheuner D. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med. 1996; 2:864-70.
- [10]Murayama O, Tomita T, Nihonmatsu N, Murayama M, Sun X, Honda T et al.. Enhancement of amyloid β 42 secretion by 28 different presenilin 1 mutations of familial Alzheimer's disease. Neurosci Lett. 1999; 265(1):61-3.
- [11]Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: Separating the Responsible Protein Aggregates from The Innocent Bystanders*. Annual Review of Neuroscience. 2003; 26(1):267-98.
- [12]Wang R, Wang B, He W, Zheng H. Wild-type Presenilin 1 Protects against Alzheimer Disease Mutation-induced Amyloid Pathology. Journal of Biological Chemistry. 2006; 281(22):15330-6.
- [13]Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D et al.. Isolation and quantification of soluble Alzheimer's b-peptide from biological fluids. Nature. 1992; 359(6393):325-7.
- [14]Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron. 1994; 13(1):45-53.
- [15]Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Younkin LH et al.. Amyloid β Protein (Aβ) in Alzheimeri's Disease Brain. J Biol Chem. 1995; 270(13):7013-6.
- [16]Moore B, Chakrabarty P, Levites Y, Kukar T, Baine A-M, Moroni T et al.. Overlapping profiles of Abeta peptides in the Alzheimer's disease and pathological aging brains. Alzheimer's Research & Therapy. 2012; 4(3):18. BioMed Central Full Text
- [17]McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C et al.. Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice. Neuron. 2005; 47(2):191-9.
- [18]Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T et al.. Cholesterol-Dependent γ-Secretase Activity in Buoyant Cholesterol-Rich Membrane Microdomains. Neurobiol Dis. 2002; 9(1):11-23.
- [19]Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. The Journal of Cell Biology. 2003; 160(1):113-23.
- [20]Song C, Liao S. Cholestenoic Acid Is a Naturally Occurring Ligand for Liver X Receptor α. Endocrinology. 2000; 141(11):4180-4.
- [21]Golde TE, Eckman CB. Cholesterol modulation as an emerging strategy for the treatment of Alzheimer's disease. Drug Discovery Today. 2001; 6(20):1049-55.
- [22]Beel AJ, Sakakura M, Barrett PJ, Sanders CR. Direct binding of cholesterol to the amyloid precursor protein: An important interaction in lipid–Alzheimer's disease relationships? Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2010; 1801(8):975-82.
- [23]Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A et al.. The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol. Science. 2012; 336(6085):1168-71.
- [24]Grimm MOW, Grimm HS, Tomic I, Beyreuther K, Hartmann T, Bergmann C. Independent Inhibition of Alzheimer Disease β- and γ-Secretase Cleavage by Lowered Cholesterol Levels. Journal of Biological Chemistry. 2008; 283(17):11302-11.
- [25]Levin-Allerhand JA, Lominska CE, Wang J, Smith JD. 17α-estradiol and 17β-estradiol treatments are effective in lowering cerebral amyloid-β levels in AβPPSWE transgenic mice. Journal of Alzheimer's Disease. 2002; 4(6):449-57.
- [26]Jung JI, Ladd TB, Kukar T, Price AR, Moore BD, Koo EH et al.. Steroids as γ-secretase modulators. FASEB J. 2013; 27:3775-85.
- [27]Kukar T, Golde TE. Possible mechanisms of action of NSAIDs and related compounds that modulate g-secretase cleavage. Curr Top Med Chem. 2008; 8(1):47-53.
- [28]Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU et al.. A subset of NSAIDs lower amyloidogenic A[beta]42 independently of cyclooxygenase activity. Nature. 2001; 414(6860):212-6.
- [29]Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC et al.. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. The Journal of Clinical Investigation. 2003; 112(3):440-9.
- [30]Beel AJ, Sanders CR. Substrate specificity of γ-secretase and other intramembrane proteases. Cell Mol Life Sci. 2008; 65(9):1311-34.
- [31]Meaney S, Heverin M, Panzenboeck U, Ekström L, Axelsson M, Andersson U et al.. Novel route for elimination of brain oxysterols across the blood–brain barrier: conversion into 7α-hydroxy-3-oxo-4-cholestenoic acid. Journal of Lipid Research. 2007; 48(4):944-51.
- [32]Sundaram SS, Bove KE, Lovell MA, Sokol RJ. Mechanisms of Disease: inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol. 2008; 5(8):456-68.
- [33]Rosen H, Reshef A, Maeda N, Lippoldt A, Shpizen S, Triger L et al.. Markedly Reduced Bile Acid Synthesis but Maintained Levels of Cholesterol and Vitamin D Metabolites in Mice with Disrupted Sterol 27-Hydroxylase Gene. Journal of Biological Chemistry. 1998; 273(24):14805-12.
- [34]Honda A, Salen G, Matsuzaki Y, Batta AK, Xu G, Leitersdorf E et al.. Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27−/− mice and CTX. Journal of Lipid Research. 2001; 42(2):291-300.
- [35]Li-Hawkins J, Lund EG, Turley SD, Russell DW. Disruption of the Oxysterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry. 2000; 275(22):16536-42.
- [36]Theofilopoulos S, Griffiths WJ, Crick PJ, Yang S, Meljon A, Ogundare M et al.. Cholestenoic acids regulate motor neuron survival via liver X receptors. The Journal of Clinical Investigation. 2014; 124(11):4829-42.
- [37]Page RM, Baumann K, Tomioka M, Pérez-Revuelta BI, Fukumori A, Jacobsen H et al.. Generation of Aβ38 and Aβ42 Is Independently and Differentially Affected by Familial Alzheimer Disease-associated Presenilin Mutations and γ-Secretase Modulation. J Biol Chem. 2008; 283(2):677-83.
- [38]Babiker A, Andersson O, Lindblom D, van der Linden J, Wiklund B, Lütjohann D et al.. Elimination of cholesterol as cholestenoic acid in human lung by sterol 27-hydroxylase: evidence that most of this steroid in the circulation is of pulmonary origin. Journal of Lipid Research. 1999; 40(8):1417-25.
- [39]Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R et al.. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. The Journal of Clinical Investigation. 1998; 102(9):1690-703.
- [40]Ogundare M, Theofilopoulos S, Lockhart A, Hall LJ, Arenas E, Sjövall J et al.. Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present in Brain? Journal of Biological Chemistry. 2010; 285(7):4666-79.
- [41]Khan SN, Kim BJ, Kim H-S. Synthesis and antimicrobial activity of 7-fluoro-3-aminosteroids. Bioorganic & Medicinal Chemistry Letters. 2007; 17(18):5139-42.
- [42]Marwah P, Thoden JB, Powell DR, Lardy HA. Steroidal allylic fluorination using diethylaminosulfur trifluoride: A convenient method for the synthesis of 3β-acetoxy-7α-and 7β-fluoroandrost-5-en-17-one. Steroids. 1996; 61(8):453-60.
- [43]Imbimbo BP, Del Giudice E, Cenacchi V, Volta R, Villetti G, Facchinetti F et al.. In vitro and in vivo profiling of CHF5022 and CHF5074: Two β-amyloid1–42 lowering agents. Pharmacological Research. 2007; 55(4):318-28.
- [44]Peretto I, Radaelli S, Parini C, Zandi M, Raveglia LF, Dondio G et al.. Synthesis and Biological Activity of Flurbiprofen Analogues as Selective Inhibitors of β-Amyloid1-42 Secretion. Journal of Medicinal Chemistry. 2005; 48(18):5705-20.
- [45]Björkhem I, Leitersdorf E. Sterol 27-hydroxylase Deficiency: A Rare Cause of Xanthomas in Normocholesterolemic Humans. Trends in Endocrinology & Metabolism. 2000; 11(5):180-3.
- [46]Lorbek G, Lewinska M, Rozman D. Cytochromes P450 in Synthesis of Cholesterol and Bile Acids: From Mouse Models to Human Diseases. FEBS Journal. 2011.
- [47]Fuller N, Hubbs J, Austin W, Creaser S, McKee T, Loureiro R et al.. The initial optimization of a new series of gamma-secretase modulators derived from a triterpene glycoside. ACS Med Chem Lett. 2012; 3:908-13.
- [48]Burg VK, Grimm HS, Rothhaar TL, Grösgen S, Hundsdörfer B, Haupenthal VJ et al.. Plant Sterols the Better Cholesterol in Alzheimer's Disease? A Mechanistical Study. The Journal of Neuroscience. 2013; 33(41):16072-87.
- [49]Urano Y, Ochiai S, Noguchi N. Suppression of amyloid-β production by 24S-hydroxycholesterol via inhibition of intracellular amyloid precursor protein trafficking. The FASEB Journal. 2013; 27(10):4305-15.
- [50]Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer's disease: Translational development and clinical promise. Progress in Neurobiology. 2014; 113(0):40-55.
- [51]Amtul Z, Wang L, Westaway D, Rozmahel RF. Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer's disease. Neuroscience. 2010; 169(2):781-6.
- [52]Sun J-H, Yu J-T, Tan L. The Role of Cholesterol Metabolism in Alzheimer’s Disease. Mol Neurobiol. 2014:1–19. doi:10.1007/s12035-014-8749-y
- [53]Popp J, Lewczuk P, Kölsch H, Meichsner S, Maier W, Kornhuber J et al.. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer's disease. Journal of Neurochemistry. 2012; 123(2):310-6.
- [54]Hubbs J, Fuller N, Austin W, Shen R, Creaser S, McKee T et al.. Optimization of a natural product-based class of gamma-secretase modulators. J Med Chem. 2012; 55:9270-82.
- [55]Holmes O, Paturi S, Ye W, Wolfe MS, Selkoe DJ. Effects of Membrane Lipids on the Activity and Processivity of Purified γ-Secretase. Biochemistry. 2012; 51(17):3565-75.
- [56]Kukar TL, Ladd TB, Bann MA, Fraering PC, Narlawar R, Maharvi GM et al.. Substrate-targeting g-secretase modulators. Nature. 2008; 453(7197):925-9.
- [57]Kukar TL, Ladd TB, Robertson P, Pintchovski SA, Moore B, Bann MA et al.. Lysine 624 of the Amyloid Precursor Protein (APP) Is a Critical Determinant of Amyloid β Peptide Length. J Biol Chem. 2011; 286(46):39804-12.
- [58]Jung JI, Ran Y, Cruz PE, Rosario AM, Ladd TB, Kukar TL et al.. Complex Relationships between Substrate Sequence and Sensitivity to Alterations in γ-Secretase Processivity Induced by γ-Secretase Modulators. Biochemistry. 2014; 53(12):1947-57.
- [59]Jung JI, Premraj S, Cruz PE, Ladd TB, Kwak Y, Koo EH et al.. Independent Relationship between Amyloid Precursor Protein (APP) Dimerization and γ-Secretase Processivity. PLoS ONE. 2014; 9(10):e111553.
- [60]Sagi SA, Lessard CB, Winden KD, Maruyama H, Koo JC, Weggen S et al.. Substrate Sequence Influences γ-Secretase Modulator Activity, Role of the Transmembrane Domain of the Amyloid Precursor Protein. J Biol Chem. 2011; 286(46):39794-803.
- [61]Ohki Y, Higo T, Uemura K, Shimada N, Osawa S, Berezovska O et al.. Phenylpiperidine-type [gamma]-secretase modulators target the transmembrane domain 1 of presenilin 1. EMBO J. 2011; 30(23):4815-24.
- [62]Jumpertz T, Rennhack A, Ness J, Baches S, Pietrzik CU, Bulic B et al.. Presenilin is the molecular target of acidic gamma-secretase modulators in living cells. PLoS ONE. 2012; 7:e30484.
- [63]Ebke A, Luebbers T, Fukumori A, Shirotani K, Haass C, Baumann K et al.. Novel γ-Secretase Enzyme Modulators Directly Target Presenilin Protein. J Biol Chem. 2011; 286(43):37181-6.
- [64]Nelson ER, DuSell CD, Wang X, Howe MK, Evans G, Michalek RD et al.. The Oxysterol, 27-Hydroxycholesterol, Links Cholesterol Metabolism to Bone Homeostasis Through Its Actions on the Estrogen and Liver X Receptors. Endocrinology. 2011; 152(12):4691-705.
- [65]Nelson ER, Chang C-y, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends in Endocrinology & Metabolism. 2014; 25(12):649-55.
- [66]Murphy MP, Uljon SN, Fraser PE, Fauq A, Lookingbill HA, Findlay KA et al.. Presenilin 1 regulates pharmacologically distinct g-secretase activities. Implications for the role of presenilin in g-secretase cleavage. J Biol Chem. 2000; 275:26277-84.
- [67]McLendon C, Xin T, Ziani-Cherif C, Murphy MP, Findlay KA, Lewis PA et al.. Cell-free assays for g-secretase activity. The FASEB Journal. 2000.
- [68]Kimberly WT, Esler WP, Ye W, Ostaszewski BL, Gao J, Diehl T et al.. Notch and the Amyloid Precursor Protein Are Cleaved by Similar γ-Secretase(s). Biochemistry. 2003; 42(1):137-44.
- [69]Esler WP, Kimberly WT, Ostaszewski BL, Ye W, Diehl TS, Selkoe DJ et al.. Activity-dependent isolation of the presenilin– γ-secretase complex reveals nicastrin and a γ substrate. Proc Natl Acad Sci USA. 2002; 99(5):2720-5.
- [70]Fraering PC, Ye W, LaVoie MJ, Ostaszewski BL, Selkoe DJ, Wolfe MS. γ-Secretase Substrate Selectivity Can Be Modulated Directly via Interaction with a Nucleotide-binding Site. J Biol Chem. 2005; 280(51):41987-96.
- [71]Price AR, Xu G, Siemienski ZB, Smithson LA, Borchelt DR, Golde TE et al.. Comment on “ApoE-Directed Therapeutics Rapidly Clear β-Amyloid and Reverse Deficits in AD Mouse Models”. Science. 2013; 340(6135):924.
- [72]Shen Q. Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. Int J Nanomedicine. 2011; 6:1237-43.
- [73]Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G et al.. Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. Journal of Lipid Research. 2007; 48(4):976-87.
- [74]Jung JI, Ladd TB, Kukar T, Price AR, Moore BD, Koo EH et al.. Steroids as γ-secretase modulators. The FASEB Journal. 2013; 27(9):3775-85.
- [75]Kukar T, Murphy MP, Eriksen JL, Sagi SA, Weggen S, Smith TE et al.. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Ab42 production. Nat Med. 2005; 11(5):545-50.
- [76]Murphy MP, Uljon SN, Fraser PE, Fauq A, Lookingbill HA, Findlay KA et al.. Presenilin 1 regulates pharmacologically distinct γ-secretase activities: implications for the role of presenilin in γ-secretase cleavage. J Biol Chem. 2000; 275(34):26277-84.
- [77]Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM et al.. Anti-Aβ42– and anti-Aβ40–specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest. 2006; 116(1):193-201.
PDF