期刊论文详细信息
Proteome Science
Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients
Anders Lindahl4  Johan Kärrholm1  Eva Skiöldebrand3  Ulla Rüetschi2  Johan Stenberg2 
[1] Institute of Clinical Sciences, Department of Orthopaedic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden;Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Box 7028, SLUS-75007 Uppsala, Sweden;Clinical Chemistry at Sahlgrenska University Hospital, Bruna Stråket 16, SE-41345 Gothenburg, Sweden
关键词: Proteomics;    Osteoarthritis;    Chondrocyte;    SILAC;    Secretome;   
Others  :  816772
DOI  :  10.1186/1477-5956-11-43
 received in 2013-05-03, accepted in 2013-09-26,  发布年份 2013
PDF
【 摘 要 】

Background

Osteoarthritis (OA) is a destructive joint disease and there are no known biomarkers available for an early diagnosis. To identify potential disease biomarkers and gain further insight into the disease mechanisms of OA we applied quantitative proteomics with SILAC technology on the secretomes from chondrocytes of OA knees, designated as high Mankin (HM) scored secretome. A quantitative comparison was made between the secretomes of the medial and lateral femur condyle chondrocytes in the same knee since the medial femur condyle is usually more affected in OA than the lateral condyle, which was confirmed by Mankin scoring. The medial/lateral comparison was also made on the secretomes from chondrocytes taken from one individual with no clinically apparent joint-disease, designated as low Mankin (LM) scored secretome.

Results

We identified 825 proteins in the HM secretome and 69 of these showed differential expression when comparing the medial and lateral femoral compartment. The LM scored femoral condyle showed early signs of OA in the medial compartment as assessed by Mankin score. We here report the identification and relative quantification of several proteins of interest for the OA disease mechanism e.g. CYTL1, DMD and STAB1 together with putative early disease markers e.g. TIMP1, PPP2CA and B2M.

Conclusions

The present study reveals differences in protein abundance between medial/lateral femur condyles in OA patients. These regulatory differences expand the knowledge regarding OA disease markers and mechanisms.

【 授权许可】

   
2013 Stenberg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710204823325.pdf 1124KB PDF download
Figure 4. 711KB Image download
Figure 3. 43KB Image download
Figure 2. 80KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Dillon CF, Rasch EK, Gu Q, Hirsch R: Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991–94. J Rheumatol 2006, 33:2271-2279.
  • [2]Muraki S, Oka H, Akune T, Mabuchi A, En-yo Y, Yoshida M, Saika A, Suzuki T, Yoshida H, Ishibashi H, Yamamoto S, Nakamura K, Kawaguchi H, Yoshimura N: Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: the ROAD study. Osteoarthr Cartil 2009, 17:1137-1143.
  • [3]van Saase JL, van Romunde LK, Cats A, Vandenbroucke JP, Valkenburg HA: Epidemiology of osteoarthritis: Zoetermeer survey. Comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. Ann Rheum Dis 1989, 48:271-280.
  • [4]Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF: The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1987, 30:914-918.
  • [5]Neame R, Zhang W, Deighton C, Doherty M, Doherty S, Lanyon P, Wright G: Distribution of radiographic osteoarthritis between the right and left hands, hips, and knees. Arthritis Rheum 2004, 50:1487-1494.
  • [6]Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994, 331:889-895.
  • [7]Peterson L, Vasiliadis HS, Brittberg M, Lindahl A: Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010, 38:1117-1124.
  • [8]Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A: Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 2008, 3:e3740.
  • [9]Ruiz-Romero C, Calamia V, Mateos J, Carreira V, Martínez-Gomariz M, Fernández M, Blanco FJ: Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics 2009, 8:172-189.
  • [10]Ruiz-Romero C, Carreira V, Rego I, Remeseiro S, López-Armada MJ, Blanco FJ: Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics 2008, 8:495-507.
  • [11]Wu J, Liu W, Bemis A, Wang E, Qiu Y, Morris EA, Flannery CR, Yang Z: Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum 2007, 56:3675-3684.
  • [12]Yammani RR, Long D, Loeser RF: Interleukin-7 stimulates secretion of S100A4 by activating the JAK/STAT signaling pathway in human articular chondrocytes. Arthritis Rheum 2009, 60:792-800.
  • [13]Huang J, Ballou LR, Hasty KA: Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 2007, 404:101-109.
  • [14]Sellam J, Berenbaum F: The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 2010, 6:625-635.
  • [15]Ushiyama T, Chano T, Inoue K, Matsusue Y: Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis 2003, 62:108-112.
  • [16]Abramson SB, Attur M: Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 2009, 11:227. BioMed Central Full Text
  • [17]Karlsson C, Brantsing C, Egell S, Lindahl A: Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 2008, 188:287-298.
  • [18]Bonin-Debs AL, Boche I, Gille H, Brinkmann U: Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther 2004, 4:551-558.
  • [19]Panoutsopoulou K, Southam L, Elliott KS, Wrayner N, Zhai G, Beazley C, Thorleifsson G, Arden NK, Carr A, Chapman K, Deloukas P, Doherty M, McCaskie A, Ollier WER, Ralston SH, Spector TD, Valdes AM, Wallis GA, Wilkinson JM, Arden E, Battley K, Blackburn H, Blanco FJ, Bumpstead S, Cupples LA, Day-Williams AG, Dixon K, Doherty SA, Esko T, Evangelou E, et al.: Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann Rheum Dis 2011, 70:864-867.
  • [20]arcOGEN Consortium and arcOGEN Collaborators: Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 2012, 380:815-823.
  • [21]Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1:376-386.
  • [22]Polacek M, Bruun J-A, Johansen O, Martinez I: Differences in the secretome of cartilage explants and cultured chondrocytes unveiled by SILAC technology. J Orthop Res 2010, 28:1040-1049.
  • [23]Calamia V, Rocha B, Mateos J, Fernández-Puente P, Ruiz-Romero C, Blanco FJ: Metabolic Labeling of Chondrocytes for the Quantitative Analysis of the Interleukin-1-beta-mediated Modulation of Their Intracellular and Extracellular Proteomes. J Proteome Res 2011, 10:3701-3711.
  • [24]Calamia V, Fernández-Puente P, Mateos JU, Lourido L, Rocha B, Montell E, Vergés J, Ruiz-Romero C, Blanco FJ: Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chondrocyte proteomes. Mol Cell Proteomics 2011, 11:M111 013417.
  • [25]Polacek M, Bruun J-A, Elvenes J, Figenschau Y, Martinez I: The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies. Cell Transplant 2011, 20:1381-1393.
  • [26]Mankin HJ, Dorfman H, Lippiello L, Zarins A: Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971, 53:523-537.
  • [27]van der Sluijs JA, Geesink RGT, van der Linden AJ, Bulstra SK, Kuyer R, Drukker J: The reliability of the mankin score for osteoarthritis. J Orthop Res 1992, 10:58-61.
  • [28]Kzhyshkowska J, Workman G, Cardó-Vila M, Arap W, Pasqualini R, Gratchev A, Krusell L, Goerdt S, Sage EH: Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J Immunol 2006, 176:5825-5832. (Baltimore, Md : 1950)
  • [29]Heinegård D, Oldberg A: Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J 1989, 3:2042-2051.
  • [30]Nakamura S, Kamihagi K, Satakeda H, Katayama M, Pan H, Okamoto H, Noshiro M, Takahashi K, Yoshihara Y, Shimmei M, Okada Y, Kato Y: Enhancement of SPARC (osteonectin) synthesis in arthritic cartilage. Increased levels in synovial fluids from patients with rheumatoid arthritis and regulation by growth factors and cytokines in chondrocyte cultures. Arthritis Rheum 1996, 39:539-551.
  • [31]Nanba Y, Nishida K, Yoshikawa T, Sato T, Inoue H, Kuboki Y: Expression of osteonectin in articular cartilage of osteoarthritic knees. Acta Med Okayama 1997, 51:239-243.
  • [32]Carlevaro MF, Albini A, Ribatti D, Gentili C, Benelli R, Cermelli S, Cancedda R, Cancedda FD: Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization. J Cell Biol 1997, 136:1375-1384.
  • [33]Vermeij WP, Florea BI, Isenia S, Alia A, Brouwer J, Backendorf C: Proteomic Identification of in Vivo Interactors Reveals Novel Function of Skin Cornification Proteins. J Proteome Res 2012, 11:3068-3076.
  • [34]Tanaka H, Morimura R, Ohshima T: Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish. Dev Biol 2012, 370:223-236.
  • [35]Nye DJ, Costas JM, Henley JB, Kim J-K, Plochocki JH: The chondrogenic response to exercise in the proximal femur of normal and mdx mice. BMC Musculoskelet Disord 2010, 11:198. BioMed Central Full Text
  • [36]Barrett AJ, Davies ME, Grubb A: The place of human gamma-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem Biophys Res Commun 1984, 120:631-636.
  • [37]Martel-Pelletier J, Cloutier JM, Pelletier JP: Cathepsin B and cysteine protease inhibitors in human osteoarthritis. J Orthop Res 1990, 8:336-344.
  • [38]Mott JD, Thomas CL, Rosenbach MT, Takahara K, Greenspan DS, Banda MJ: Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J Biol Chem 2000, 275:1384-1390.
  • [39]Zhang H, Liew CC, Marshall KW: Microarray analysis reveals the involvement of beta-2 microglobulin (B2M) in human osteoarthritis. Osteoarthritis Cartilage 2002, 10:950-960.
  • [40]Stenhamre H, Slynarski K, Petrén C, Tallheden T, Lindahl A: Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint. Osteoarthr Cartil 2008, 16:1356-1362.
  • [41]Wakabayashi T, Matsumine A, Nakazora S, Hasegawa M, Iino T, Ota H, Sonoda H, Sudo A, Uchida A: Fibulin-3 negatively regulates chondrocyte differentiation. Biochem Biophys Res Commun 2010, 391:1116-1121.
  • [42]Henrotin Y, Gharbi M, Mazzucchelli G, Dubuc J-E, De Pauw E, Deberg M: Fibulin 3 peptides Fib3-1 and Fib3-2 are potential biomarkers of osteoarthritis. Arthritis Rheum 2012, 64:2260-2267.
  • [43]Wang Y, Li D, Xu N, Tao W, Zhu R, Sun R, Fan W, Zhang P, Dong T, Yu L: Follistatin-like protein 1: a serum biochemical marker reflecting the severity of joint damage in patients with osteoarthritis. Arthritis Res Ther 2011, 13:R193. BioMed Central Full Text
  • [44]Johansen JS, Jensen HS, Price PA: A new biochemical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol 1993, 32:949-955.
  • [45]Huang K, Wu LD: YKL-40: a potential biomarker for osteoarthritis. J Int Med Res 2009, 37:18-24.
  • [46]Kawahara C, Forster T, Chapman K, Carr A, Loughlin J: Genetic association analysis of the IGFBP7, ADAMTS3, and IL8 genes as the potential osteoarthritis susceptibility that maps to chromosome 4q. Ann Rheum Dis 2005, 64:474-476.
  • [47]Zhu W, Shiojima I, Ito Y, Li Z, Ikeda H, Yoshida M, Naito AT, Nishi J-I, Ueno H, Umezawa A, Minamino T, Nagai T, Kikuchi A, Asashima M, Komuro I: IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature 2008, 454:345-349.
  • [48]Blom AB, van Lent PL, van der Kraan PM, van den Berg WB: To seek shelter from the WNT in osteoarthritis? WNT-signaling as a target for osteoarthritis therapy. Current drug targets 2010, 11:620-629.
  • [49]Miclea RL, Siebelt M, Finos L, Goeman JJ, Löwik CWGM, Oostdijk W, Weinans H, Wit JM, Robanus-Maandag EC, Karperien M: Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway. Osteoarthr Cartil 2011, 19:1363-1372.
  • [50]Corr M: Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 2008, 4:550-556.
  • [51]Kim J-S, Ryoo ZY, Chun J-S: Cytokine-like 1 (Cytl1) regulates the chondrogenesis of mesenchymal cells. J Biol Chem 2007, 282:29359-29367.
  • [52]Jeon J, Oh H, Lee G, Ryu J-H, Rhee J, Kim J-H, Chung K-H, Song W-K, Chun C-H, Chun J-S: Cytokine-like 1 knock-out mice (Cytl1-/-) show normal cartilage and bone development but exhibit augmented osteoarthritic cartilage destruction. J Biol Chem 2011, 286:27206-27213.
  • [53]Zreiqat H, Belluoccio D, Smith MM, Wilson R, Rowley LA, Jones K, Ramaswamy Y, Vogl T, Roth J, Bateman JF, Little CB: S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res Ther 2010, 12:R16. BioMed Central Full Text
  • [54]Lee S-W, Jung KH, Jeong CH, Seo JH, Yoon D-K, Suh J-K, Kim K-W, Kim WJ: Inhibition of endothelial cell migration through the down-regulation of MMP-9 by A-kinase anchoring protein 12. Mol Med Rep 2011, 4:145-149.
  • [55]Suehara Y, Tochigi N, Kubota D, Kikuta K, Nakayama R, Seki K, Yoshida A, Ichikawa H, Hasegawa T, Kaneko K, Chuman H, Beppu Y, Kawai A, Kondo T: Secernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics. J Proteomics 2011, 74:829-842.
  • [56]Way G, Morrice N, Smythe C, O’Sullivan AJ: Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol Biol Cell 2002, 13:3344-3354.
  • [57]Miyoshi N, Ishii H, Mimori K, Sekimoto M, Doki Y, Mori M: SCRN1 is a novel marker for prognosis in colorectal cancer. J Surg Oncol 2010, 101:156-159.
  • [58]Zhu C, Hu DL, Liu YQ, Zhang QJ, Chen FK, Kong XQ, Cao KJ, Zhang JS, Qian LM: Fabp3 inhibits proliferation and promotes apoptosis of embryonic myocardial cells. Cell Biochem Biophys 2011, 60:259-266.
  • [59]Song G-X, Shen Y-H, Liu Y-Q, Sun W, Miao LP, Zhou L-J, Liu H-L, Yang R, Kong X-Q, Cao KJ, Qian L-M, Sheng Y-H: Overexpression of FABP3 promotes apoptosis through inducing mitochondrial impairment in embryonic cancer cells. J Cell Biochem 2012, 113:3701-3708.
  • [60]Shen Y-H, Song G-X, Liu Y-Q, Sun W, Zhou L-J, Liu H-L, Yang R, Sheng Y-H, Qian L-M, Kong X-Q: Silencing of FABP3 promotes apoptosis and induces mitochondrion impairment in embryonic carcinoma cells. J Bioenerg Biomembr 2012, 44:317-323.
  • [61]Lires-Deán M, Caramés B, Cillero-Pastor B, Galdo F, López-Armada MJ, Blanco FJ: Anti-apoptotic effect of transforming growth factor-beta1 on human articular chondrocytes: role of protein phosphatase 2A. Osteoarthr Cartil 2008, 16:1370-1378.
  • [62]Zákány R, Bakó E, Felszeghy S, Holló K, Balázs M, Bárdos H, Gergely P, Módis L: Okadaic acid-induced inhibition of protein phosphatase 2A enhances chondrogenesis in chicken limb bud micromass cell cultures. Anat Embryol (Berl) 2001, 203:23-34.
  • [63]Zákány R, Szucs K, Bakó E, Felszeghy S, Czifra G, Bíró T, Módis L, Gergely P: Protein phosphatase 2A is involved in the regulation of protein kinase A signaling pathway during in vitro chondrogenesis. Exp Cell Res 2002, 275:1-8.
  • [64]Forsman A, Rüetschi U, Ekholm J, Rymo L: Identification of Intracellular Proteins Associated with the EBV-Encoded Nuclear Antigen 5 Using an Efficient TAP Procedure and FT-ICR Mass Spectrometry. J Proteome Res 2008, 7:2309-2319.
  • [65]Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008, 26:1367-1372.
  • [66]Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M: Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 2011, 10:1794-1805.
  • [67]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [68]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  文献评价指标  
  下载次数:5次 浏览次数:11次