Stem Cell Research & Therapy | |
Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation | |
Laura Vergani2  Antonio Uccelli1  Gianluigi Mancardi1  Francesca Gualandi3  Enrico Carminati2  Adriana Voci2  Federica Benvenuto1  | |
[1] Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, Genova, 16132, Italy;Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, Genova, 16132, Italy;Division of Hematology and Bone Marrow Transplant Unit, IRCCS-AUO San Martino-IST, Largo Rosanna Benzi 10, Genova, 16132, Italy | |
关键词: leukocyte migratory potential; transendothelial migration; surface adhesion molecules and receptors; immunosuppressive effects; human endothelial cells; CD3+-selected lymphocytes; mesenchymal stem cells; | |
Others : 1235609 DOI : 10.1186/s13287-015-0222-y |
|
received in 2015-09-09, accepted in 2015-11-02, 发布年份 2015 | |
【 摘 要 】
Introduction
Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration.
Methods
We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration.
Results
Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3 + -selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3 +cells; (iv) down-regulated expression of adhesion molecules on endothelial cells.
Conclusions
Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
【 授权许可】
2015 Benvenuto et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20160123100543624.pdf | 1383KB | download | |
Fig. 4. | 32KB | Image | download |
Fig. 3. | 25KB | Image | download |
Fig. 2. | 32KB | Image | download |
Fig. 1. | 27KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
【 参考文献 】
- [1]Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW, et al.: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009, 462(7269):94-98.
- [2]Lassmann H, Bruck W, Lucchinetti CF: The immunopathology of multiple sclerosis: an overview. Brain Pathol 2007, 17(2):210-218.
- [3]Engelhardt B: The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 2008, 14(16):1555-1565.
- [4]Archelos JJ, Jung S, Mäurer M, Schmied M, Lassmann H, Tamatani T, et al.: Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Ann Neurol 1993, 34(2):145-154.
- [5]Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N: Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta1 integrin. Nature 1992, 356(6364):3-6.
- [6]Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, et al.: A controlled trial of natalizumab for relapsing remitting multiple sclerosis. N Engl J Med. 2003, 348:15-23.
- [7]Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992, 69(1):11-25.
- [8]von Andrian UH, Engelhardt B: Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 2003, 348(1):68-72.
- [9]Archelos JJ, Previtali SC, Hartung HP: The role of integrins in immune-mediated diseases of the central nervous system. Trends Neurosci 1999, 22(1):30-38.
- [10]Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr: Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993, 177(1):57-68.
- [11]Engelhardt B: Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm 2006, 113(4):477-485.
- [12]Steinman L: Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 2005, 4(6):510-518.
- [13]van de Stolpe A, van der Saag PT: Intercellular adhesion molecule-1. J Mol Med (Berl) 1996, 74(1):13-33.
- [14]Steffen BJ, Butcher EC, Engelhardt B: Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 1994, 145(1):189-201.
- [15]Greenwood J, Amos CL, Walters CE, Couraud PO, Lyck R, Engelhardt B: Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol 2003, 171(4):2099-2108.
- [16]Reiss Y, Hoch G, Deutsch U, Engelhardt B: T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol 1998, 28(10):3086-3099.
- [17]Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al.: Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 2009, 66(3):390-402.
- [18]Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, et al.: Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 2003, 73(5):584-590.
- [19]Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, et al.: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999, 103(6):807-815.
- [20]García-López MA, Sánchez-Madrid F, Rodríguez-Frade JM, Mellado M, Acevedo A, García MI, et al.: CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Invest 2001, 81(3):409-418.
- [21]Lee SJ, Benveniste EN: Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol 1999, 98(2):77-88.
- [22]Lee BP, Imhof BA: Lymphocyte transmigration in the brain: a new way of thinking. Nat Immunol 2008, 9(2):117-118.
- [23]Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, et al.: Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 2008, 9(2):137-145.
- [24]Wagner M, Bilinska M, Pokryszko-Dragan A, Sobczynski M, Cyrul M, Kusnierczyk P, et al.: ALCAM and CD6—multiple sclerosis risk factors. J Neuroimmunol 2014, 276(1–2):98-103.
- [25]da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 1996, 11:2204-2213.
- [26]Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105(4):1815-1822.
- [27]Uccelli A, Moretta L, Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008, 8(9):726-736.
- [28]Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, et al.: Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 2007, 25(7):1753-1760.
- [29]Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG, Robinson AP, et al.: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006, 198(1):54-64.
- [30]Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, et al.: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A 2008, 105(38):14638-14643.
- [31]Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, et al.: Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 2009, 110(5):1674-1684.
- [32]Uccelli A: Mesenchymal stem cells exert a remarkable regenerative effect requiring minimal CNS integration: commentary on: “Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function” by Voulgari-Kokota et al. Exp Neurol. 2013, 247:292-295.
- [33]Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, et al.: Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005, 106(5):1755-1761.
- [34]Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et al.: Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 2007, 61(3):219-227.
- [35]Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, et al.: Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 2007, 21(8):1733-1738.
- [36]Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, et al.: Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005, 11(5):389-398.
- [37]Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Levis I, et al.: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008, 371:1579-1586.
- [38]Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al.: Bone marrow mesenchymal stem cell inhibit the response of naïve and memory antigen-specific T cells to their cognate peptide. Blood 2003, 101(9):3722-3729.
- [39]Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al.: Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005, 35(5):1482-1490.
- [40]Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al.: Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006, 24(2):386-398.
- [41]Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al.: Mesenchymal stem cells mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cells 2008, 2(2):141-150.
- [42]Vergani L, Lanza C, Rivaro P, Abelmoschi LM, Genti S, Veneselli E, et al.: Metals, metallothioneins and oxidative stress in blood of autistic children. Res Autism Spectr Disord 2011, 5(1):286-293.
- [43]Grasselli E, Voci A, Canesi L, De Matteis R, Goglia F, Cioffi F, et al.: Direct effects of iodothyronines on excess fat storage in rat hepatocytes. J Hepatol 2011, 54(6):1230-1236.
- [44]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001., 29(9) Article ID e45
- [45]Vignali DA: Multiplexed particle-based flow cytometric assays. J Immunol Methods 2000, 243(1–2):243-255.
- [46]Corcione A, Arduino N, Ferretti PA, Spinelli M, Ottonello L, et al.: Chemokine receptor expression and function in childhood acute lymphoblastic leukemia of B-lineage. Leuk Res. 2006, 30:365-372.
- [47]Constantin G: Chemokine signaling and integrin activation in lymphocyte migration into the inflamed brain. J Neuroimmunol 2008, 198(1–2):20-26.
- [48]Freedman MS, Uccelli A: Neurorepair with mesenchymal stem cells: hope or hype? Lancet Neurol 2012, 11(2):123-125.
- [49]Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F: Mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105(7):2821-2827.
- [50]Harrer A, Wipfler P, Einhaeupl MH, Pilz G, Oppermann K, Hitzl W, et al.: Natalizumab therapy decreases surface expression of both VLA-heterodimer subunits on peripheral blood mononuclear cells. J Neuroimmunol 2011, 234(1–2):148-154.
- [51]van Kooyk Y, van de Wiel-van Kemenade P, Weder P, Kuijpers TW, Figdor CG: Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature 1989, 342(6251):811-813.
- [52]Vazirinejad R, Ahmadi Z, Kazemi Arababadi M, Hassanshahi G, Kennedy D: The biological functions, structure and sources of CXCL10 and its outstanding part of the pathophisiology of multiple sclerosis. Neuroimmunomodulation 2014, 21(6):322-330.
- [53]Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F: The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell Immunol 2008, 251(2):131-136.
- [54]Arimilli S, Ferlin W, Solvason NA, Deshpande S, Howard M, Mocci S: Chemokines in autoimmune diseases. Immunol Rev. 2000, 177:43-51.
- [55]Liu L, Huang D, Matsui M, He TT, Hu T, Demartino J, et al.: Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3−/− mice with experimental autoimmune encephalomyelitis. J Immunol 2006, 176(7):4399-4409.
- [56]Müller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, et al.: CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 2007, 179(5):2774-2786.
- [57]Kawai K, Kobayashi Y, Shiratori M, Sobue G, Tamatani T, Miyasaka M, et al.: Intrathecal administration of antibodies against LFA-1 and against ICAM-1 suppresses experimental allergic encephalomyelitis in rats. Cell Immunol 1996, 171(2):262-268.
- [58]Willenborg DO, Simmons RD, Tamatani T, Miyasaka M: ICAM-1-dependent pathway is not critically involved in the inflammatory process of autoimmune encephalomyelitis or in cytokine-induced inflammation of the central nervous system. J Neuroimmunol 1993, 45(1–2):147-154.
- [59]Kobayashi Y, Kawai K, Honda H, Tomida S, Niimi N, Tamatani T, et al.: Antibodies against leukocyte function-associated antigen-1 and against intercellular adhesion molecule-1 together suppress the progression of experimental allergic encephalomyelitis. Cell Immunol 1995, 164(2):295-305.
- [60]Samoilova EB, Horton JL, Chen Y: Experimental autoimmune encephalomyelitis in intercellular adhesion molecule-1-deficient mice. Cell Immunol 1998, 190(1):83-89.
- [61]Bullard DC, Hu X, Schoeb TR, Collins RG, Beaudet AL, Barnum SR: Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol 2007, 178(2):851-857.
- [62]Hu X, Barnum SR, Wohler JE, Schoeb TR, Bullard DC: Differential ICAM-1 isoform expression regulates the development and progression of experimental autoimmune encephalomyelitis. Mol Immunol 2010, 47(9):1692-1700.
- [63]Swart GW: Activated leukocyte cell adhesion molecules (ALCAM/CD166): developmental and mechanistic aspects of cell-clustering and cell migration. Eur J Cell Biol 2002, 81(6):313-321.