期刊论文详细信息
Retrovirology
The frantic play of the concealed HIV envelope cytoplasmic tail
Danielle Perez Bercoff1  Martin Mulinge1  Eveline Santos da Silva1 
[1] Laboratory of Retrovirology, CRP-Santé, 184 Val Fleuri, Luxembourg L-1526, USA
关键词: Envelope intracellular interacting factors;    Viral assembly;    Envelope trafficking;    Envelope gp41 cytoplasmic tail;    Lentiviruses;    HIV-1;   
Others  :  1209125
DOI  :  10.1186/1742-4690-10-54
 received in 2012-12-21, accepted in 2013-05-01,  发布年份 2013
PDF
【 摘 要 】

Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.

【 授权许可】

   
2013 Santos da Silva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602083403276.pdf 3273KB PDF download
Figure 4. 62KB Image download
Figure 3. 100KB Image download
Figure 2. 47KB Image download
Figure 1. 174KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Earl PL, Doms RW, Moss B: Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci USA 1990, 87:648-652.
  • [2]Chan DC, Fass D, Berger JM, Kim PS: Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997, 89:263-273.
  • [3]Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393:648-659.
  • [4]Moore JP, Doms RW: The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci USA 2003, 100:10598-10602.
  • [5]Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC: Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997, 387:426-430.
  • [6]Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG: The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 1998, 393:705-711.
  • [7]Mao Y, Wang L, Gu C, Herschhorn A, Xiang SH, Haim H, Yang X, Sodroski J: Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer. Nat Struct Mol Biol 2012, 19:893-899.
  • [8]Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA: CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996, 272:1955-1958.
  • [9]Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, et al.: Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381:661-666.
  • [10]Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996, 272:872-877.
  • [11]Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, et al.: The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996, 85:1135-1148.
  • [12]Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA: HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996, 381:667-673.
  • [13]Tan K, Liu J, Wang J, Shen S, Lu M: Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 1997, 94:12303-12308.
  • [14]Crise B, Buonocore L, Rose JK: CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 1990, 64:5585-5593.
  • [15]Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD: Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci USA 1988, 85:9580-9584.
  • [16]Earl PL, Moss B, Doms RW: Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 1991, 65:2047-2055.
  • [17]Courageot J, Fenouillet E, Bastiani P, Miquelis R: Intracellular degradation of the HIV-1 envelope glycoprotein. Evidence for, and some characteristics of, an endoplasmic reticulum degradation pathway. Eur J Biochem 1999, 260:482-489.
  • [18]Bernstein HB, Compans RW: Sulfation of the human immunodeficiency virus envelope glycoprotein. J Virol 1992, 66:6953-6959.
  • [19]Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine WA, Lee TH, Essex M: Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 1985, 228:1091-1094.
  • [20]Bernstein HB, Tucker SP, Hunter E, Schutzbach JS, Compans RW: Human immunodeficiency virus type 1 envelope glycoprotein is modified by O-linked oligosaccharides. J Virol 1994, 68:463-468.
  • [21]Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ: Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 1990, 265:10373-10382.
  • [22]Earl PL, Koenig S, Moss B: Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J Virol 1991, 65:31-41.
  • [23]Schawaller M, Smith GE, Skehel JJ, Wiley DC: Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV. Virology 1989, 172:367-369.
  • [24]Fenouillet E, Jones IM: The glycosylation of human immunodeficiency virus type 1 transmembrane glycoprotein (gp41) is important for the efficient intracellular transport of the envelope precursor gp160. J Gen Virol 1995, 76(Pt 6):1509-1514.
  • [25]Checkley MA, Luttge BG, Freed EO: HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011, 410:582-608.
  • [26]Bunnik EM, Pisas L, Van Nuenen AC, Schuitemaker H: Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol 2008, 82:7932-7941.
  • [27]Borggren M, Repits J, Sterjovski J, Uchtenhagen H, Churchill MJ, Karlsson A, Albert J, Achour A, Gorry PR, Fenyo EM, Jansson M: Increased sensitivity to broadly neutralizing antibodies of end-stage disease R5 HIV-1 correlates with evolution in Env glycosylation and charge. PLoS One 2011, 6:e20135.
  • [28]Fenyo EM, Esbjornsson J, Medstrand P, Jansson M: Human immunodeficiency virus type 1 biological variation and coreceptor use: from concept to clinical significance. J Intern Med 2011, 270:520-531.
  • [29]Steckbeck JD, Craigo JK, Barnes CO, Montelaro RC: Highly conserved structural properties of the C-terminal tail of HIV-1 gp41 protein despite substantial sequence variation among diverse clades: implications for functions in viral replication. J Biol Chem 2011, 286:27156-27166.
  • [30]Steckbeck JD, Kuhlmann AS, Montelaro RC: C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic. J Gen Virol 2012, 94:1-19.
  • [31]Postler TS, Desrosiers RC: The Tale of the Long Tail: the Cytoplasmic Domain of HIV-1 gp41. J Virol 2012, 87:2-15.
  • [32]Pang HB, Hevroni L, Kol N, Eckert DM, Tsvitov M, Kay MS, Rousso I: Virion stiffness regulates immature HIV-1 entry. Retrovirology 2013, 10:4. BioMed Central Full Text
  • [33]Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J, Muller B, Hell SW, Krausslich HG: Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 2012, 338:524-528.
  • [34]Hunter E, Swanstrom R: Retrovirus envelope glycoproteins. Curr Top Microbiol Immunol 1990, 157:187-253.
  • [35]Buratti E, McLain L, Tisminetzky S, Cleveland SM, Dimmock NJ, Baralle FE: The neutralizing antibody response against a conserved region of human immunodeficiency virus type 1 gp41 (amino acid residues 731–752) is uniquely directed against a conformational epitope. J Gen Virol 1998, 79(Pt 11):2709-2716.
  • [36]Reading SA, Heap CJ, Dimmock NJ: A novel monoclonal antibody specific to the C-terminal tail of the gp41 envelope transmembrane protein of human immunodeficiency virus type 1 that preferentially neutralizes virus after it has attached to the target cell and inhibits the production of infectious progeny. Virology 2003, 315:362-372.
  • [37]Heap CJ, Reading SA, Dimmock NJ: An antibody specific for the C-terminal tail of the gp41 transmembrane protein of human immunodeficiency virus type 1 mediates post-attachment neutralization, probably through inhibition of virus-cell fusion. J Gen Virol 2005, 86:1499-1507.
  • [38]Cheung L, McLain L, Hollier MJ, Reading SA, Dimmock NJ: Part of the C-terminal tail of the envelope gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 is exposed on the surface of infected cells and is involved in virus-mediated cell fusion. J Gen Virol 2005, 86:131-138.
  • [39]Eisenberg D, Wesson M: The most highly amphiphilic alpha-helices include two amino acid segments in human immunodeficiency virus glycoprotein 41. Biopolymers 1990, 29:171-177.
  • [40]Miller MA, Garry RF, Jaynes JM, Montelaro RC: A structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides. AIDS Res Hum Retroviruses 1991, 7:511-519.
  • [41]Kliger Y, Shai Y: A leucine zipper-like sequence from the cytoplasmic tail of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers. Biochemistry 1997, 36:5157-5169.
  • [42]Venable RM, Pastor RW, Brooks BR, Carson FW: Theoretically determined three-dimensional structures for amphipathic segments of the HIV-1 gp41 envelope protein. AIDS Res Hum Retroviruses 1989, 5:7-22.
  • [43]Dubay JW, Roberts SJ, Hahn BH, Hunter E: Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 1992, 66:6616-6625.
  • [44]Yu X, Yuan X, McLane MF, Lee TH, Essex M: Mutations in the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein impair the incorporation of Env proteins into mature virions. J Virol 1993, 67:213-221.
  • [45]Piller SC, Dubay JW, Derdeyn CA, Hunter E: Mutational analysis of conserved domains within the cytoplasmic tail of gp41 from human immunodeficiency virus type 1: effects on glycoprotein incorporation and infectivity. J Virol 2000, 74:11717-11723.
  • [46]Kalia V, Sarkar S, Gupta P, Montelaro RC: Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J Virol 2003, 77:3634-3646.
  • [47]Jiang J, Aiken C: Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 2007, 81:9999-10008.
  • [48]Miller MA, Cloyd MW, Liebmann J, Rinaldo CR Jr, Islam KR, Wang SZ, Mietzner TA, Montelaro RC: Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology 1993, 196:89-100.
  • [49]Chen SS, Lee SF, Wang CT: Cellular membrane-binding ability of the C-terminal cytoplasmic domain of human immunodeficiency virus type 1 envelope transmembrane protein gp41. J Virol 2001, 75:9925-9938.
  • [50]Chernomordik L, Chanturiya AN, Suss-Toby E, Nora E, Zimmerberg J: An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J Virol 1994, 68:7115-7123.
  • [51]Comardelle AM, Norris CH, Plymale DR, Gatti PJ, Choi B, Fermin CD, Haislip AM, Tencza SB, Mietzner TA, Montelaro RC, Garry RF: A synthetic peptide corresponding to the carboxy terminus of human immunodeficiency virus type 1 transmembrane glycoprotein induces alterations in the ionic permeability of Xenopus laevis oocytes. AIDS Res Hum Retroviruses 1997, 13:1525-1532.
  • [52]Murakami T, Freed EO: Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 2000, 74:3548-3554.
  • [53]Gabuzda DH, Lever A, Terwilliger E, Sodroski J: Effects of deletions in the cytoplasmic domain on biological functions of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 1992, 66:3306-3315.
  • [54]Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C: Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 2004, 78:3429-3435.
  • [55]Lee SF, Wang CT, Liang JY, Hong SL, Huang CC, Chen SS: Multimerization potential of the cytoplasmic domain of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. J Biol Chem 2000, 275:15809-15819.
  • [56]Zhu Y, Lu L, Chao L, Chen YH: Important changes in biochemical properties and function of mutated LLP12 domain of HIV-1 gp41. Chem Biol Drug Des 2007, 70:311-318.
  • [57]Edwards TG, Wyss S, Reeves JD, Zolla-Pazner S, Hoxie JA, Doms RW, Baribaud F: Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 2002, 76:2683-2691.
  • [58]Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA: Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 2005, 79:12231-12241.
  • [59]Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS: The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle. J Virol 2005, 79:106-115.
  • [60]Lu L, Zhu Y, Huang J, Chen X, Yang H, Jiang S, Chen YH: Surface exposure of the HIV-1 env cytoplasmic tail LLP2 domain during the membrane fusion process: interaction with gp41 fusion core. J Biol Chem 2008, 283:16723-16731.
  • [61]Spies CP, Compans RW: Effects of cytoplasmic domain length on cell surface expression and syncytium-forming capacity of the simian immunodeficiency virus envelope glycoprotein. Virology 1994, 203:8-19.
  • [62]Affranchino JL, Gonzalez SA: Mutations at the C-terminus of the simian immunodeficiency virus envelope glycoprotein affect gp120-gp41 stability on virions. Virology 2006, 347:217-225.
  • [63]Durham ND, Yewdall AW, Chen P, Lee R, Zony C, Robinson JE, Chen BK: Neutralization resistance of virological synapse-mediated HIV-1 Infection is regulated by the gp41 cytoplasmic tail. J Virol 2012, 86:7484-7495.
  • [64]Davis MR, Jiang J, Zhou J, Freed EO, Aiken C: A mutation in the human immunodeficiency virus type 1 Gag protein destabilizes the interaction of the envelope protein subunits gp120 and gp41. J Virol 2006, 80:2405-2417.
  • [65]Bhakta SJ, Shang L, Prince JL, Claiborne DT, Hunter E: Mutagenesis of tyrosine and di-leucine motifs in the HIV-1 envelope cytoplasmic domain results in a loss of Env-mediated fusion and infectivity. Retrovirology 2011, 8:37. BioMed Central Full Text
  • [66]Haffar OK, Dowbenko DJ, Berman PW: Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 1988, 107:1677-1687.
  • [67]Kennedy RC, Henkel RD, Pauletti D, Allan JS, Lee TH, Essex M, Dreesman GR: Antiserum to a synthetic peptide recognizes the HTLV-III envelope glycoprotein. Science 1986, 231:1556-1559.
  • [68]Chanh TC, Dreesman GR, Kanda P, Linette GP, Sparrow JT, Ho DD, Kennedy RC: Induction of anti-HIV neutralizing antibodies by synthetic peptides. EMBO J 1986, 5:3065-3071.
  • [69]Cleveland SM, McLain L, Cheung L, Jones TD, Hollier M, Dimmock NJ: A region of the C-terminal tail of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 contains a neutralizing epitope: evidence for its exposure on the surface of the virion. J Gen Virol 2003, 84:591-602.
  • [70]Hollier MJ, Dimmock NJ: The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function. Virology 2005, 337:284-296.
  • [71]Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC: Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes. PLoS One 2010, 5:e15261.
  • [72]Waheed AA, Ablan SD, Roser JD, Sowder RC, Schaffner CP, Chertova E, Freed EO: HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease. Proc Natl Acad Sci USA 2007, 104:8467-8471.
  • [73]Waheed AA, Ablan SD, Sowder RC, Roser JD, Schaffner CP, Chertova E, Freed EO: Effect of mutations in the human immunodeficiency virus type 1 protease on cleavage of the gp41 cytoplasmic tail. J Virol 2010, 84:3121-3126.
  • [74]Futaki S, Nakase I, Suzuki T, Nameki D, Kodama E, Matsuoka M, Sugiura Y: RNase S complex bearing arginine-rich peptide and anti-HIV activity. J Mol Recognit 2005, 18:169-174.
  • [75]Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB: Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 2000, 56:318-325.
  • [76]Tung CH, Weissleder R: Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev 2003, 55:281-294.
  • [77]Viard M, Ablan SD, Zhou M, Veenstra TD, Freed EO, Raviv Y, Blumenthal R: Photoinduced reactivity of the HIV-1 envelope glycoprotein with a membrane-embedded probe reveals insertion of portions of the HIV-1 Gp41 cytoplasmic tail into the viral membrane. Biochemistry 2008, 47:1977-1983.
  • [78]Postler TS, Martinez-Navio JM, Yuste E, Desrosiers RC: Evidence against extracellular exposure of a highly immunogenic region in the C-terminal domain of the simian immunodeficiency virus gp41 transmembrane protein. J Virol 2012, 86:1145-1157.
  • [79]Postler TS, Desrosiers RC: The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-kappaB activation through TGF-beta-activated kinase 1. Cell Host Microbe 2012, 11:181-193.
  • [80]Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, Bieniasz PD: Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 2006, 4:e435.
  • [81]Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Krausslich HG: HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 2007, 3:e36.
  • [82]Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M: In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 2007, 177:329-341.
  • [83]Adamson CS, Freed EO: Human immunodeficiency virus type 1 assembly, release, and maturation. Adv Pharmacol 2007, 55:347-387.
  • [84]Bieniasz PD: The cell biology of HIV-1 virion genesis. Cell Host Microbe 2009, 5:550-558.
  • [85]Ono A, Freed EO: Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 2001, 98:13925-13930.
  • [86]Ono A, Freed EO: Role of lipid rafts in virus replication. Adv Virus Res 2005, 64:311-358.
  • [87]Waheed AA, Freed EO: Lipids and membrane microdomains in HIV-1 replication. Virus Res 2009, 143:162-176.
  • [88]Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO: Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci USA 2004, 101:14889-14894.
  • [89]Chukkapalli V, Hogue IB, Boyko V, Hu WS, Ono A: Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol 2008, 82:2405-2417.
  • [90]Simmons A, Aluvihare V, McMichael A: Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 2001, 14:763-777.
  • [91]Zhou W, Parent LJ, Wills JW, Resh MD: Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 1994, 68:2556-2569.
  • [92]Ono A, Orenstein JM, Freed EO: Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J Virol 2000, 74:2855-2866.
  • [93]Chow JY, Jeffries CM, Kwan AH, Guss JM, Trewhella J: Calmodulin disrupts the structure of the HIV-1 MA protein. J Mol Biol 2010, 400:702-714.
  • [94]Ghanam RH, Fernandez TF, Fledderman EL, Saad JS: Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure. J Biol Chem 2010, 285:41911-41920.
  • [95]Zhou W, Resh MD: Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. J Virol 1996, 70:8540-8548.
  • [96]Spearman P, Horton R, Ratner L, Kuli-Zade I: Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 1997, 71:6582-6592.
  • [97]Scarlata S, Carter C: Role of HIV-1 Gag domains in viral assembly. Biochim Biophys Acta 2003, 1614:62-72.
  • [98]Ono A, Waheed AA, Joshi A, Freed EO: Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay. J Virol 2005, 79:14131-14140.
  • [99]Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ: Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 2007, 26:2218-2226.
  • [100]Jouvenet N, Bieniasz PD, Simon SM: Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 2008, 454:236-240.
  • [101]Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 1996, 93:3099-3104.
  • [102]Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG: Structure and assembly of immature HIV. Proc Natl Acad Sci USA 2009, 106:11090-11095.
  • [103]Alfadhli A, Barklis RL, Barklis E: HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 2009, 387:466-472.
  • [104]Murakami T: Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012, 2012:682850.
  • [105]Ghanam RH, Samal AB, Fernandez TF, Saad JS: Role of the HIV-1 matrix protein in gag intracellular trafficking and targeting to the plasma membrane for virus assembly. Front Microbiol 2012, 3:55.
  • [106]Sandrin V, Cosset FL: Intracellular versus cell surface assembly of retroviral pseudotypes is determined by the cellular localization of the viral glycoprotein, its capacity to interact with Gag, and the expression of the Nef protein. J Biol Chem 2006, 281:528-542.
  • [107]Sandrin V, Russell SJ, Cosset FL: Targeting retroviral and lentiviral vectors. Curr Top Microbiol Immunol 2003, 281:137-178.
  • [108]Leung K, Kim JO, Ganesh L, Kabat J, Schwartz O, Nabel GJ: HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions. Cell Host Microbe 2008, 3:285-292.
  • [109]Jorgenson RL, Vogt VM, Johnson MC: Foreign glycoproteins can be actively recruited to virus assembly sites during pseudotyping. J Virol 2009, 83:4060-4067.
  • [110]Lee YM, Tang XB, Cimakasky LM, Hildreth JE, Yu XF: Mutations in the matrix protein of human immunodeficiency virus type 1 inhibit surface expression and virion incorporation of viral envelope glycoproteins in CD4+ T lymphocytes. J Virol 1997, 71:1443-1452.
  • [111]Owens RJ, Dubay JW, Hunter E, Compans RW: Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 1991, 88:3987-3991.
  • [112]Cosson P: Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 1996, 15:5783-5788.
  • [113]Hourioux C, Brand D, Sizaret PY, Lemiale F, Lebigot S, Barin F, Roingeard P: Identification of the glycoprotein 41(TM) cytoplasmic tail domains of human immunodeficiency virus type 1 that interact with Pr55Gag particles. AIDS Res Hum Retroviruses 2000, 16:1141-1147.
  • [114]Freed EO, Martin MA: Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 1995, 69:1984-1989.
  • [115]Mammano F, Kondo E, Sodroski J, Bukovsky A, Gottlinger HG: Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol 1995, 69:3824-3830.
  • [116]Wyma DJ, Kotov A, Aiken C: Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J Virol 2000, 74:9381-9387.
  • [117]Celma CC, Manrique JM, Affranchino JL, Hunter E, Gonzalez SA: Domains in the simian immunodeficiency virus gp41 cytoplasmic tail required for envelope incorporation into particles. Virology 2001, 283:253-261.
  • [118]Freed EO, Martin MA: Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 1996, 70:341-351.
  • [119]Murakami T, Freed EO: The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci USA 2000, 97:343-348.
  • [120]Akari H, Fukumori T, Adachi A: Cell-dependent requirement of human immunodeficiency virus type 1 gp41 cytoplasmic tail for Env incorporation into virions. J Virol 2000, 74:4891-4893.
  • [121]Lodge R, Gottlinger H, Gabuzda D, Cohen EA, Lemay G: The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol 1994, 68:4857-4861.
  • [122]Lodge R, Lalonde JP, Lemay G, Cohen EA: The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J 1997, 16:695-705.
  • [123]LaBranche CC, Sauter MM, Haggarty BS, Vance PJ, Romano J, Hart TK, Bugelski PJ, Marsh M, Hoxie JA: A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells. J Virol 1995, 69:5217-5227.
  • [124]Yu X, Yuan X, Matsuda Z, Lee TH, Essex M: The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 1992, 66:4966-4971.
  • [125]Dorfman T, Mammano F, Haseltine WA, Gottlinger HG: Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 1994, 68:1689-1696.
  • [126]Gonzalez SA, Burny A, Affranchino JL: Identification of domains in the simian immunodeficiency virus matrix protein essential for assembly and envelope glycoprotein incorporation. J Virol 1996, 70:6384-6389.
  • [127]Beaumont E, Vendrame D, Verrier B, Roch E, Biron F, Barin F, Mammano F, Brand D: Matrix and envelope coevolution revealed in a patient monitored since primary infection with human immunodeficiency virus type 1. J Virol 2009, 83:9875-9889.
  • [128]Owens RJ, Rose JK: Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. J Virol 1993, 67:360-365.
  • [129]Murakami T, Ablan S, Freed EO, Tanaka Y: Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 2004, 78:1026-1031.
  • [130]Kol N, Shi Y, Tsvitov M, Barlam D, Shneck RZ, Kay MS, Rousso I: A stiffness switch in human immunodeficiency virus. Biophys J 2007, 92:1777-1783.
  • [131]Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R: The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 1994, 68:8017-8027.
  • [132]Muranyi W, Malkusch S, Muller B, Heilemann M, Krausslich HG: Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 2013, 9:e1003198.
  • [133]Egan MA, Carruth LM, Rowell JF, Yu X, Siliciano RF: Human immunodeficiency virus type 1 envelope protein endocytosis mediated by a highly conserved intrinsic internalization signal in the cytoplasmic domain of gp41 is suppressed in the presence of the Pr55gag precursor protein. J Virol 1996, 70:6547-6556.
  • [134]Micoli KJ, Pan G, Wu Y, Williams JP, Cook WJ, McDonald JM: Requirement of calmodulin binding by HIV-1 gp160 for enhanced FAS-mediated apoptosis. J Biol Chem 2000, 275:1233-1240.
  • [135]Radding W, Pan ZQ, Hunter E, Johnston P, Williams JP, McDonald JM: Expression of HIV-1 envelope glycoprotein alters cellular calmodulin. Biochem Biophys Res Commun 1996, 218:192-197.
  • [136]Ishikawa H, Sasaki M, Noda S, Koga Y: Apoptosis induction by the binding of the carboxyl terminus of human immunodeficiency virus type 1 gp160 to calmodulin. J Virol 1998, 72:6574-6580.
  • [137]Micoli KJ, Mamaeva O, Piller SC, Barker JL, Pan G, Hunter E, McDonald JM: Point mutations in the C-terminus of HIV-1 gp160 reduce apoptosis and calmodulin binding without affecting viral replication. Virology 2006, 344:468-479.
  • [138]Rein A, Mirro J, Haynes JG, Ernst SM, Nagashima K: Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol 1994, 68:1773-1781.
  • [139]Brody BA, Rhee SS, Hunter E: Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 1994, 68:4620-4627.
  • [140]Wilk T, Pfeiffer T, Bosch V: Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology 1992, 189:167-177.
  • [141]Emerson V, Haller C, Pfeiffer T, Fackler OT, Bosch V: Role of the C-terminal domain of the HIV-1 glycoprotein in cell-to-cell viral transmission between T lymphocytes. Retrovirology 2010, 7:43. BioMed Central Full Text
  • [142]Iwatani Y, Ueno T, Nishimura A, Zhang X, Hattori T, Ishimoto A, Ito M, Sakai H: Modification of virus infectivity by cytoplasmic tail of HIV-1 TM protein. Virus Res 2001, 74:75-87.
  • [143]Zhu P, Chertova E, Bess J Jr, Lifson JD, Arthur LO, Liu J, Taylor KA, Roux KH: Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 2003, 100:15812-15817.
  • [144]Yuste E, Reeves JD, Doms RW, Desrosiers RC: Modulation of Env content in virions of simian immunodeficiency virus: correlation with cell surface expression and virion infectivity. J Virol 2004, 78:6775-6785.
  • [145]Chertova E, Bess JW Jr, Crise BJ, Sowder IR, Schaden TM, Hilburn JM, Hoxie JA, Benveniste RE, Lifson JD, Henderson LE, Arthur LO: Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), Is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 2002, 76:5315-5325.
  • [146]Tsujimoto H, Cooper RW, Kodama T, Fukasawa M, Miura T, Ohta Y, Ishikawa K, Nakai M, Frost E, Roelants GE, et al.: Isolation and characterization of simian immunodeficiency virus from mandrills in Africa and its relationship to other human and simian immunodeficiency viruses. J Virol 1988, 62:4044-4050.
  • [147]Chakrabarti L, Emerman M, Tiollais P, Sonigo P: The cytoplasmic domain of simian immunodeficiency virus transmembrane protein modulates infectivity. J Virol 1989, 63:4395-4403.
  • [148]Hirsch VM, Edmondson P, Murphey-Corb M, Arbeille B, Johnson PR, Mullins JI: SIV adaptation to human cells. Nature 1989, 341:573-574.
  • [149]Kodama T, Wooley DP, Naidu YM, Kestler HW 3rd, Daniel MD, Li Y, Desrosiers RC: Significance of premature stop codons in env of simian immunodeficiency virus. J Virol 1989, 63:4709-4714.
  • [150]Ritter GD Jr, Mulligan MJ, Lydy SL, Compans RW: Cell fusion activity of the simian immunodeficiency virus envelope protein is modulated by the intracytoplasmic domain. Virology 1993, 197:255-264.
  • [151]Zingler K, Littman DR: Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases env incorporation into particles and fusogenicity and infectivity. J Virol 1993, 67:2824-2831.
  • [152]Shacklett BL, Weber CJ, Shaw KE, Keddie EM, Gardner MB, Sonigo P, Luciw PA: The intracytoplasmic domain of the Env transmembrane protein is a locus for attenuation of simian immunodeficiency virus SIVmac in rhesus macaques. J Virol 2000, 74:5836-5844.
  • [153]Mulligan MJ, Yamshchikov GV, Ritter GD Jr, Gao F, Jin MJ, Nail CD, Spies CP, Hahn BH, Compans RW: Cytoplasmic domain truncation enhances fusion activity by the exterior glycoprotein complex of human immunodeficiency virus type 2 in selected cell types. J Virol 1992, 66:3971-3975.
  • [154]Nilsson T, Warren G: Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol 1994, 6:517-521.
  • [155]Munro S: An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 1995, 14:4695-4704.
  • [156]Bultmann A, Muranyi W, Seed B, Haas J: Identification of two sequences in the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein that inhibit cell surface expression. J Virol 2001, 75:5263-5276.
  • [157]Rowell JF, Stanhope PE, Siliciano RF: Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 1995, 155:473-488.
  • [158]Ohno H, Fournier MC, Poy G, Bonifacino JS: Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains. J Biol Chem 1996, 271:29009-29015.
  • [159]Ohno H, Aguilar RC, Fournier MC, Hennecke S, Cosson P, Bonifacino JS: Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family. Virology 1997, 238:305-315.
  • [160]Batonick M, Favre M, Boge M, Spearman P, Honing S, Thali M: Interaction of HIV-1 Gag with the clathrin-associated adaptor AP-2. Virology 2005, 342:190-200.
  • [161]Camus G, Segura-Morales C, Molle D, Lopez-Verges S, Begon-Pescia C, Cazevieille C, Schu P, Bertrand E, Berlioz-Torrent C, Basyuk E: The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol Biol Cell 2007, 18:3193-3203.
  • [162]Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS, Woodruff E, Wang JJ, Spearman P: AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 2005, 120:663-674.
  • [163]Liu L, Sutton J, Woodruff E, Villalta F, Spearman P, Dong X: Defective HIV-1 particle assembly in AP-3-deficient cells derived from patients with Hermansky-Pudlak syndrome type 2. J Virol 2012, 86:11242-11253.
  • [164]Berlioz-Torrent C, Shacklett BL, Erdtmann L, Delamarre L, Bouchaert I, Sonigo P, Dokhelar MC, Benarous R: Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins. J Virol 1999, 73:1350-1361.
  • [165]Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C: Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006, 103:14947-14952.
  • [166]Bowers K, Pelchen-Matthews A, Honing S, Vance PJ, Creary L, Haggarty BS, Romano J, Ballensiefen W, Hoxie JA, Marsh M: The simian immunodeficiency virus envelope glycoprotein contains multiple signals that regulate its cell surface expression and endocytosis. Traffic 2000, 1:661-674.
  • [167]Wyss S, Berlioz-Torrent C, Boge M, Blot G, Honing S, Benarous R, Thali M: The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor [correction of adapter]. J Virol 2001, 75:2982-2992.
  • [168]Byland R, Vance PJ, Hoxie JA, Marsh M: A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 2007, 18:414-425.
  • [169]Dingwell KS, Johnson DC: The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J Virol 1998, 72:8933-8942.
  • [170]Johnson DC, Huber MT: Directed egress of animal viruses promotes cell-to-cell spread. J Virol 2002, 76:1-8.
  • [171]Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL: Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 1999, 274:31076-31086.
  • [172]Blot G, Janvier K, Le Panse S, Benarous R, Berlioz-Torrent C: Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 2003, 77:6931-6945.
  • [173]Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, et al.: Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 2005, 79:11742-11751.
  • [174]Lambele M, Labrosse B, Roch E, Moreau A, Verrier B, Barin F, Roingeard P, Mammano F, Brand D: Impact of natural polymorphism within the gp41 cytoplasmic tail of human immunodeficiency virus type 1 on the intracellular distribution of envelope glycoproteins and viral assembly. J Virol 2007, 81:125-140.
  • [175]Bauby H, Lopez-Verges S, Hoeffel G, Delcroix-Genete D, Janvier K, Mammano F, Hosmalin A, Berlioz-Torrent C: TIP47 is required for the production of infectious HIV-1 particles from primary macrophages. Traffic 2010, 11:455-467.
  • [176]Feng Y, Press B, Wandinger-Ness A: Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 1995, 131:1435-1452.
  • [177]Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 1990, 62:317-329.
  • [178]Vitelli R, Santillo M, Lattero D, Chiariello M, Bifulco M, Bruni CB, Bucci C: Role of the small GTPase Rab7 in the late endocytic pathway. J Biol Chem 1997, 272:4391-4397.
  • [179]Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD, Grinstein S: Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 2003, 23:2501-2514.
  • [180]Wang T, Ming Z, Xiaochun W, Hong W: Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal 2011, 23:516-521.
  • [181]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319:921-926.
  • [182]Caillet M, Janvier K, Pelchen-Matthews A, Delcroix-Genete D, Camus G, Marsh M, Berlioz-Torrent C: Rab7A is required for efficient production of infectious HIV-1. PLoS Pathog 2011, 7:e1002347.
  • [183]Bucci C, Thomsen P, Nicoziani P, McCarthy J, Van Deurs B: Rab7: a key to lysosome biogenesis. Mol Biol Cell 2000, 11:467-480.
  • [184]Lebrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, Faure J, Gruenberg J: Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J 2002, 21:1289-1300.
  • [185]Ceresa BP: Bahr SJ: rab7 activity affects epidermal growth factor:epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. J Biol Chem 2006, 281:1099-1106.
  • [186]Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL: Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 2004, 117:4837-4848.
  • [187]Gutierrez MG, Munafo DB, Beron W, Colombo MI: Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004, 117:2687-2697.
  • [188]Schiavoni I, Muratori C, Piacentini V, Giammarioli AM, Federico M: The HIV-1 Nef protein: how an AIDS pathogenetic factor turns to a tool for combating AIDS. Curr Drug Targets Immune Endocr Metabol Disord 2004, 4:19-27.
  • [189]Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, et al.: Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 2009, 186:255-268.
  • [190]Dinkins C, Arko-Mensah J, Deretic V: Autophagy and HIV. Semin Cell Dev Biol 2010, 21:712-718.
  • [191]Evans DT, Tillman KC, Desrosiers RC: Envelope glycoprotein cytoplasmic domains from diverse lentiviruses interact with the prenylated Rab acceptor. J Virol 2002, 76:327-337.
  • [192]Blancou P, Evans DT, Desrosiers RC: PRA1 co-localizes with envelope but does not influence primate lentivirus production, infectivity or envelope incorporation. J Gen Virol 2005, 86:1785-1790.
  • [193]Brown DA, London E: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000, 275:17221-17224.
  • [194]Simons K, Gerl MJ: Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 2010, 11:688-699.
  • [195]Munro S: Lipid rafts: elusive or illusive? Cell 2003, 115:377-388.
  • [196]Aloia RC, Tian H, Jensen FC: Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 1993, 90:5181-5185.
  • [197]Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG: The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 2006, 103:2641-2646.
  • [198]Bhattacharya J, Peters PJ, Clapham PR: Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles. J Virol 2004, 78:5500-5506.
  • [199]Campbell S, Oshima M, Mirro J, Nagashima K, Rein A: Reversal by dithiothreitol treatment of the block in murine leukemia virus maturation induced by disulfide cross-linking. J Virol 2002, 76:10050-10055.
  • [200]Guyader M, Kiyokawa E, Abrami L, Turelli P, Trono D: Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J Virol 2002, 76:10356-10364.
  • [201]Graham DR, Chertova E, Hilburn JM, Arthur LO, Hildreth JE: Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J Virol 2003, 77:8237-8248.
  • [202]Liao Z, Graham DR, Hildreth JE: Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res Hum Retroviruses 2003, 19:675-687.
  • [203]Campbell S, Gaus K, Bittman R, Jessup W, Crowe S, Mak J: The raft-promoting property of virion-associated cholesterol, but not the presence of virion-associated Brij 98 rafts, is a determinant of human immunodeficiency virus type 1 infectivity. J Virol 2004, 78:10556-10565.
  • [204]Yang P, Ai LS, Huang SC, Li HF, Chan WE, Chang CW, Ko CY, Chen SS: The cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 harbors lipid raft association determinants. J Virol 2010, 84:59-75.
  • [205]Rousso I, Mixon MB, Chen BK, Kim PS: Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci USA 2000, 97:13523-13525.
  • [206]Bhattacharya J, Repik A, Clapham PR: Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J Virol 2006, 80:5292-5300.
  • [207]Chan WE, Lin HH, Chen SS: Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals. J Virol 2005, 79:8374-8387.
  • [208]Bhatia AK, Kaushik R, Campbell NA, Pontow SE, Ratner L: Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail. Virology 2009, 384:233-241.
  • [209]Ali A, Avalos RT, Ponimaskin E, Nayak DP: Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol 2000, 74:8709-8719.
  • [210]Henderson G, Murray J, Yeo RP: Sorting of the respiratory syncytial virus matrix protein into detergent-resistant structures is dependent on cell-surface expression of the glycoproteins. Virology 2002, 300:244-254.
  • [211]Day JR, Munk C, Guatelli JC: The membrane-proximal tyrosine-based sorting signal of human immunodeficiency virus type 1 gp41 is required for optimal viral infectivity. J Virol 2004, 78:1069-1079.
  • [212]Schiavoni I, Trapp S, Santarcangelo AC, Piacentini V, Pugliese K, Baur A, Federico M: HIV-1 Nef enhances both membrane expression and virion incorporation of Env products. A model for the Nef-dependent increase of HIV-1 infectivity. J Biol Chem 2004, 279:22996-23006.
  • [213]Bresnahan PA, Yonemoto W, Ferrell S, Williams-Herman D, Geleziunas R, Greene WC: A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr Biol 1998, 8:1235-1238.
  • [214]Adnan S, Balamurugan A, Trocha A, Bennett MS, Ng HL, Ali A, Brander C, Yang OO: Nef interference with HIV-1-specific CTL antiviral activity is epitope specific. Blood 2006, 108:3414-3419.
  • [215]Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL: HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 2008, 4:e1000131.
  • [216]El-Far M, Isabelle C, Chomont N, Bourbonniere M, Fonseca S, Ancuta P, Peretz Y, Chouikh Y, Halwani R, Schwartz O, et al.: Down-Regulation of CTLA-4 by HIV-1 Nef Protein. PLoS One 2013, 8:e54295.
  • [217]Stolp B, Fackler OT: How HIV takes advantage of the cytoskeleton in entry and replication. Viruses 2011, 3:293-311.
  • [218]Miller MD, Warmerdam MT, Gaston I, Greene WC, Feinberg MB: The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J Exp Med 1994, 179:101-113.
  • [219]Roeth JF, Collins KL: Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev 2006, 70:548-563.
  • [220]Zhou J, Aiken C: Nef enhances human immunodeficiency virus type 1 infectivity resulting from intervirion fusion: evidence supporting a role for Nef at the virion envelope. J Virol 2001, 75:5851-5859.
  • [221]Stumptner-Cuvelette P, Jouve M, Helft J, Dugast M, Glouzman AS, Jooss K, Raposo G, Benaroch P: Human immunodeficiency virus-1 Nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell 2003, 14:4857-4870.
  • [222]Zheng YH, Plemenitas A, Fielding CJ, Peterlin BM: Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions. Proc Natl Acad Sci USA 2003, 100:8460-8465.
  • [223]St Gelais C, Coleman CM, Wang JH, Wu L: HIV-1 Nef Enhances Dendritic Cell-Mediated Viral Transmission to CD4(+) T Cells and Promotes T-Cell Activation. PLoS One 2012, 7:e34521.
  • [224]Wolf D, Witte V, Clark P, Blume K, Lichtenheld MG, Baur AS: HIV Nef enhances Tat-mediated viral transcription through a hnRNP-K-nucleated signaling complex. Cell Host Microbe 2008, 4:398-408.
  • [225]Omoto S, Fujii YR: Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 2005, 86:751-755.
  • [226]Witte V, Laffert B, Gintschel P, Krautkramer E, Blume K, Fackler OT, Baur AS: Induction of HIV transcription by Nef involves Lck activation and protein kinase C theta raft recruitment leading to activation of ERK1/2 but not NF kappa B. J Immunol 2008, 181:8425-8432.
  • [227]Neri F, Giolo G, Potesta M, Petrini S, Doria M: The HIV-1 Nef protein has a dual role in T cell receptor signaling in infected CD4+ T lymphocytes. Virology 2011, 410:316-326.
  • [228]Arold ST, Baur AS: Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Trends Biochem Sci 2001, 26:356-363.
  • [229]Chazal N, Singer G, Aiken C, Hammarskjold ML, Rekosh D: Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J Virol 2001, 75:4014-4018.
  • [230]Perugi F, Muriaux D, Ramirez BC, Chabani S, Decroly E, Darlix JL, Blot V, Pique C: Human Discs Large is a new negative regulator of human immunodeficiency virus-1 infectivity. Mol Biol Cell 2009, 20:498-508.
  • [231]Coleman SH, Van Damme N, Day JR, Noviello CM, Hitchin D, Madrid R, Benichou S, Guatelli JC: Leucine-specific, functional interactions between human immunodeficiency virus type 1 Nef and adaptor protein complexes. J Virol 2005, 79:2066-2078.
  • [232]Madrid R, Janvier K, Hitchin D, Day J, Coleman S, Noviello C, Bouchet J, Benmerah A, Guatelli J, Benichou S: Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity. J Biol Chem 2005, 280:5032-5044.
  • [233]Costa LJ, Chen N, Lopes A, Aguiar RS, Tanuri A, Plemenitas A, Peterlin BM: Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 2006, 3:33. BioMed Central Full Text
  • [234]Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM: Nef binds p6* in GagPol during replication of human immunodeficiency virus type 1. J Virol 2004, 78:5311-5323.
  • [235]Leiherer A, Ludwig C, Wagner R: Influence of extended mutations of the HIV-1 transframe protein p6 on Nef-dependent viral replication and infectivity in vitro. Virology 2009, 387:200-210.
  • [236]He C, Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009, 43:67-93.
  • [237]Fader CM, Colombo MI: Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 2009, 16:70-78.
  • [238]Noda T, Yoshimori T: Molecular basis of canonical and bactericidal autophagy. Int Immunol 2009, 21:1199-1204.
  • [239]Welsch S, Muller B, Krausslich HG: More than one door - Budding of enveloped viruses through cellular membranes. FEBS Lett 2007, 581:2089-2097.
  • [240]Schibli DJ, Montelaro RC, Vogel HJ: The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. Biochemistry 2001, 40:9570-9578.
  • [241]Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L, Qiao Z, Wang JH, Wagner G, Reinherz EL: HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 2008, 28:52-63.
  • [242]Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W: Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog 2010, 6:e1000880.
  • [243]Lai RP, Yan J, Heeney J, McClure MO, Gottlinger H, Luban J, Pizzato M: Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41. PLoS Pathog 2011, 7:e1002442.
  • [244]Tokunaga K, Kojima A, Kurata T, Ikuta K, Inubushi R, Shimano R, Kawamura M, Akari H, Koyama AH, Adachi A: Producer cell-dependent requirement of the Nef protein for efficient entry of HIV-1 into cells. Biochem Biophys Res Commun 1998, 250:565-568.
  • [245]Tokunaga K, Kojima A, Kurata T, Ikuta K, Akari H, Koyama AH, Kawamura M, Inubushi R, Shimano R, Adachi A: Enhancement of human immunodeficiency virus type 1 infectivity by Nef is producer cell-dependent. J Gen Virol 1998, 79(Pt 10):2447-2453.
  • [246]Srinivas SK, Srinivas RV, Anantharamaiah GM, Compans RW, Segrest JP: Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins. J Biol Chem 1993, 268:22895-22899.
  • [247]Tencza SB, Mietzner TA, Montelaro RC: Calmodulin-binding function of LLP segments from the HIV type 1 transmembrane protein is conserved among natural sequence variants. AIDS Res Hum Retroviruses 1997, 13:263-269.
  • [248]Pan Z, Radding W, Zhou T, Hunter E, Mountz J, McDonald JM: Role of calmodulin in HIV-potentiated Fas-mediated apoptosis. Am J Pathol 1996, 149:903-910.
  • [249]Emerson V, Holtkotte D, Pfeiffer T, Wang IH, Schnolzer M, Kempf T, Bosch V: Identification of the cellular prohibitin 1/prohibitin 2 heterodimer as an interaction partner of the C-terminal cytoplasmic domain of the HIV-1 glycoprotein. J Virol 2010, 84:1355-1365.
  • [250]Zhang H, Wang L, Kao S, Whitehead IP, Hart MJ, Liu B, Duus K, Burridge K, Der CJ, Su L: Functional interaction between the cytoplasmic leucine-zipper domain of HIV-1 gp41 and p115-RhoGEF. Curr Biol 1999, 9:1271-1274.
  • [251]Wang L, Zhang H, Solski PA, Hart MJ, Der CJ, Su L: Modulation of HIV-1 replication by a novel RhoA effector activity. J Immunol 2000, 164:5369-5374.
  • [252]Adhikari A, Xu M, Chen ZJ: Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007, 26:3214-3226.
  • [253]Nabel G, Baltimore D: An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987, 326:711-713.
  • [254]Saksela K, Cheng G, Baltimore D: Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef?+?viruses but not for down-regulation of CD4. EMBO J 1995, 14:484-491.
  • [255]Alexander L, Du Z, Rosenzweig M, Jung JU, Desrosiers RC: A role for natural simian immunodeficiency virus and human immunodeficiency virus type 1 nef alleles in lymphocyte activation. J Virol 1997, 71:6094-6099.
  • [256]Wang JK, Kiyokawa E, Verdin E, Trono D: The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci USA 2000, 97:394-399.
  • [257]Fenard D, Yonemoto W, De Noronha C, Cavrois M, Williams SA, Greene WC: Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement. J Immunol 2005, 175:6050-6057.
  • [258]Biggs TE, Cooke SJ, Barton CH, Harris MP, Saksela K, Mann DA: Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. J Mol Biol 1999, 290:21-35.
  • [259]Schrager JA, Minassian V, Marsh JW: HIV Nef increases T cell ERK MAP kinase activity. J Biol Chem 2002, 277:6137-6142.
  • [260]Janeway CA Jr, Bottomly K: Signals and signs for lymphocyte responses. Cell 1994, 76:275-285.
  • [261]Linsley PS, Ledbetter JA: The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993, 11:191-212.
  • [262]DenBoer LM, Hardy-Smith PW, Hogan MR, Cockram GP, Audas TE, Lu R: Luman is capable of binding and activating transcription from the unfolded protein response element. Biochem Biophys Res Commun 2005, 331:113-119.
  • [263]Liang G, Audas TE, Li Y, Cockram GP, Dean JD, Martyn AC, Kokame K, Lu R: Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element. Mol Cell Biol 2006, 26:7999-8010.
  • [264]Audas TE, Li Y, Liang G, Lu R: A novel protein, Luman/CREB3 recruitment factor, inhibits Luman activation of the unfolded protein response. Mol Cell Biol 2008, 28:3952-3966.
  • [265]Blot G, Lopez-Verges S, Treand C, Kubat NJ, Delcroix-Genete D, Emiliani S, Benarous R, Berlioz-Torrent C: Luman, a new partner of HIV-1 TMgp41, interferes with Tat-mediated transcription of the HIV-1 LTR. J Mol Biol 2006, 364:1034-1047.
  • [266]Neil SJ, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451:425-430.
  • [267]Jouvenet N, Neil SJ, Zhadina M, Zang T, Kratovac Z, Lee Y, McNatt M, Hatziioannou T, Bieniasz PD: Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol 2009, 83:1837-1844.
  • [268]Douglas JL, Gustin JK, Viswanathan K, Mansouri M, Moses AV, Fruh K: The great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog 2010, 6:e1000913.
  • [269]Evans DT, Serra-Moreno R, Singh RK, Guatelli JC: BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol 2010, 18:388-396.
  • [270]Janvier K, Pelchen-Matthews A, Renaud JB, Caillet M, Marsh M, Berlioz-Torrent C: The ESCRT-0 component HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog 2011, 7:e1001265.
  • [271]Kuhl BD, Sloan RD, Donahue DA, Bar-Magen T, Liang C, Wainberg MA: Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 2010, 7:115. BioMed Central Full Text
  • [272]Serra-Moreno R, Jia B, Breed M, Alvarez X, Evans DT: Compensatory changes in the cytoplasmic tail of gp41 confer resistance to tetherin/BST-2 in a pathogenic nef-deleted SIV. Cell Host Microbe 2011, 9:46-57.
  • [273]Le Tortorec A, Neil SJ: Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol 2009, 83:11966-11978.
  文献评价指标  
  下载次数:24次 浏览次数:26次