期刊论文详细信息
Respiratory Research
Profibrotic potential of Prominin-1+ epithelial progenitor cells in pulmonary fibrosis
Gabriela Kania2  Urs Eriksson2  Thomas F Lüscher5  Beatrice Beck-Schimmer6  Christian M Matter5  Holger Moch4  Sokrates Stein1  Davide Germano3  Przemyslaw Blyszczuk2 
[1] Cardiovascular Research and Zürich Center for Integrative Human Physiology; Institute of Physiology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;Department of Medicine, GZO - Zürich Regional Health Center, Spitalstr. 66, CH-8620 Wetzikon, Switzerland;PreClinical Safety, Novartis Pharma AG, Klybeckstr. 141, CH-4057 Basel, Switzerland;Departament of Pathology, University Hospital Zürich, Raemistr. 100 CH-8001 Zürich, Switzerland;Departament of Cardiology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, and University Hospital Zürich, Raemistr. 100, CH-8001 Zürich, Switzerland;Lung Immunopathology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, and University Hospital Zürich, Raemistr. 100, CH-8001 Zürich, Switzerland
关键词: prominin-1/CD133;    progenitor;    myofibroblasts;    lung;    idiopathic pulmonary fibrosis;    bone marrow;   
Others  :  796796
DOI  :  10.1186/1465-9921-12-126
 received in 2011-06-27, accepted in 2011-09-26,  发布年份 2011
PDF
【 摘 要 】

Background

In idiopathic pulmonary fibrosis loss of alveolar epithelium induces inflammation of the pulmonary tissue followed by accumulation of pathogenic myofibroblasts leading eventually to respiratory failures. In animal models inflammatory and resident cells have been demonstrated to contribute to pulmonary fibrosis. Regenerative potential of pulmonary and extra-pulmonary stem and progenitor cells raised the hope for successful treatment option against pulmonary fibrosis. Herein, we addressed the contribution of lung microenvironment and prominin-1+ bone marrow-derived epithelial progenitor cells in the mouse model of bleomycin-induced experimental pulmonary fibrosis.

Methods

Prominin-1+ bone marrow-derived epithelial progenitors were expanded from adult mouse lungs and differentiated in vitro by cytokines and growth factors. Pulmonary fibrosis was induced in C57Bl/6 mice by intratracheal instillation of bleomycin. Prominin-1+ progenitors were administered intratracheally at different time points after bleomycin challenge. Green fluorescence protein-expressing cells were used for cell tracking. Cell phenotypes were characterized by immunohistochemistry, flow cytometry and quantitative reverse transcription-polymerase chain reaction.

Results

Prominin-1+ cells expanded from healthy lung represent common progenitors of alveolar type II epithelial cells, myofibroblasts, and macrophages. Administration of prominin-1+ cells 2 hours after bleomycin instillation protects from pulmonary fibrosis, and some of progenitors differentiate into alveolar type II epithelial cells. In contrast, prominin-1+ cells administered at day 7 or 14 lose their protective effects and differentiate into myofibroblasts and macrophages. Bleomycin challenge enhances accumulation of bone marrow-derived prominin-1+ cells within inflamed lung. In contrast to prominin-1+ cells from healthy lung, prominin-1+ precursors isolated from inflamed organ lack regenerative properties but acquire myofibroblast and macrophage phenotypes.

Conclusion

The microenvironment of inflamed lung impairs the regenerative capacity of bone marrow-derived prominin-1+ progenitors and promotes their differentiation into pathogenic phenotypes.

【 授权许可】

   
2011 Blyszczuk et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706005849134.pdf 6268KB PDF download
Figure 7. 138KB Image download
Figure 6. 162KB Image download
Figure 5. 107KB Image download
Figure 4. 221KB Image download
Figure 3. 202KB Image download
Figure 2. 87KB Image download
Figure 1. 252KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Antoniou KM, Pataka A, Bouros D, Siafakas NM: Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2007, 20(5):453-461.
  • [2]Castriotta RJ, Eldadah BA, Foster WM, Halter JB, Hazzard WR, Kiley JP, King TE, Horne FM, Nayfield SG, Reynolds HY, Schmader KE, Toews GB, High KP: Workshop on idiopathic pulmonary fibrosis in older adults. Chest 2010, 138(3):693-703.
  • [3]Moore BB, Hogaboam CM: Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008, 294(2):L152-160.
  • [4]Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA 2006, 103(35):13180-13185.
  • [5]Gharaee-Kermani M, Gyetko MR, Hu B, Phan SH: New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis: a potential role for stem cells in the lung parenchyma and implications for therapy. Pharm Res 2007, 24(5):819-841.
  • [6]Epperly MW, Guo H, Gretton JE, Greenberger JS: Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 2003, 29(2):213-224.
  • [7]Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH: Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004, 113(2):243-252.
  • [8]Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, Sherrill TP, Plieth D, Neilson EG, Blackwell TS, Lawson WE: Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2009, 180(7):657-665.
  • [9]Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR: Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 2001, 24(6):671-681.
  • [10]Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T: Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005, 121(6):823-835.
  • [11]Wong AP, Keating A, Lu WY, Duchesneau P, Wang X, Sacher A, Hu J, Waddell TK: Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest 2009, 119(2):336-348.
  • [12]Germano D, Blyszczuk P, Valaperti A, Kania G, Dirnhofer S, Landmesser U, Luscher TF, Hunziker L, Zulewski H, Eriksson U: Prominin-1/CD133+ lung epithelial progenitors protect from bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 2009, 179(10):939-949.
  • [13]Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS: Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 2004, 305(5680):90-93.
  • [14]Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL: Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005, 33(2):145-152.
  • [15]Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, Suzuki T, Sasaki H: Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett 2004, 556:(1-3):249-252.
  • [16]Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN, Hyman AL, Kadowitz PJ: Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol 2007, 292(2):H1120-1128.
  • [17]Kotton DN, Fabian AJ, Mulligan RC: Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol 2005, 33(4):328-334.
  • [18]Loi R, Beckett T, Goncz KK, Suratt BT, Weiss DJ: Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med 2006, 173(2):171-179.
  • [19]Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, Boheler KR, Wobus AM: Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 2005, 23(6):791-804.
  • [20]Mizrak D, Brittan M, Alison MR: CD133: molecule of the moment. J Pathol 2008, 214(1):3-9.
  • [21]Kania G, Blyszczuk P, Stein S, Valaperti A, Germano D, Dirnhofer S, Hunziker L, Matter CM, Eriksson U: Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor beta-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ Res 2009, 105(5):462-470.
  • [22]Kania G, Blyszczuk P, Valaperti A, Dieterle T, Leimenstoll B, Dirnhofer S, Zulewski H, Eriksson U: Prominin-1+/CD133+ bone marrow-derived heart-resident cells suppress experimental autoimmune myocarditis. Cardiovasc Res 2008, 80(2):236-245.
  • [23]Suratt BT, Cool CD, Serls AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, Worthen GS: Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 2003, 168(3):318-322.
  • [24]Mattsson J, Jansson M, Wernerson A, Hassan M: Lung epithelial cells and type II pneumocytes of donor origin after allogeneic hematopoietic stem cell transplantation. Transplantation 2004, 78(1):154-157.
  • [25]Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC: Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 2007, 35(9):1466-1475.
  • [26]Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG: Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003, 100(14):8407-8411.
  • [27]Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA: Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007, 179(3):1855-1863.
  • [28]Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S: Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003, 171(1):380-389.
  • [29]Deng C, Wang J, Zou Y, Zhao Q, Feng J, Fu Z, Guo C: Characterization of fibroblasts recruited from bone marrow derived precursor in neonatal Bronchopulmonary dysplasia (BPD) mice. J Appl Physiol 2011.
  • [30]Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, Poulsom R, Hodivala-Dilke K, Alison MR, Wright NA: Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 2003, 21(5):514-520.
  • [31]Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM: Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 2004, 114(3):438-446.
  • [32]Sime PJ, O'Reilly KM: Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 2001, 99(3):308-319.
  • [33]Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z: Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 2005, 166(5):1321-1332.
  • [34]Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D: NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 2005, 97(9):900-907.
  • [35]Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF, Frangogiannis NG: Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 2007, 116(19):2127-2138.
  • [36]Serrano-Mollar A, Nacher M, Gay-Jordi G, Closa D, Xaubet A, Bulbena O: Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2007, 176(12):1261-1268.
  文献评价指标  
  下载次数:40次 浏览次数:16次