期刊论文详细信息
Molecular Neurodegeneration
Ceruloplasmin functional changes in Parkinson’s disease-cerebrospinal fluid
Massimo Alessio1  Angelo Corti6  Giancarlo Comi5  Laura Ferrari3  Maria Antonietta Volontè3  Giuseppe Magnani3  Antonio Conti1  Massimo Lazzaro1  Alan Zanardi5  Annapaola Andolfo2  Flavio Curnis6  Marco Barbariga4 
[1] Proteome Biochemistry, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, Milan, 20132, Italy;ProMiFa-Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, Milan, 20132, Italy;INSPE-Institute of Experimental Neurology, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, Milan, 20132, Italy;Present address: Translational Neurology group, Wallenberg Neuroscience Center, BMC A10, Lund, 221 84, Sweden;Vita-Salute San Raffaele University, via Olgettina 60, Milan, 20132, Italy;Tumor Biology and Vascular Targeting, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, Milan, 20132, Italy
关键词: Hydrogen peroxide;    NGR and isoDGR motif;    Ferroxidase;    Integrin-binding;    Deamidation;    Oxidative stress;    Parkinson;    Ceruloplasmin;   
Others  :  1230389
DOI  :  10.1186/s13024-015-0055-2
 received in 2015-08-28, accepted in 2015-10-29,  发布年份 2015
PDF
【 摘 要 】

Background

Ceruloplasmin, a ferroxidase present in cerebrospinal fluid (CSF), plays a role in iron homeostasis protecting tissues from oxidative damage. Its reduced enzymatic activity was reported in Parkinson’s disease (PD) contributing to the pathological iron accumulation. We previously showed that ceruloplasmin is modified by oxidation in vivo, and, in addition, in vitro by deamidation of specific NGR-motifs that foster the gain of integrin-binding function. Here we investigated whether the loss of ceruloplasmin ferroxidase activity in the CSF of PD patients was accompanied by NGR-motifs deamidation and gain of function.

Results

We have found that endogenous ceruloplasmin in the CSF of PD patients showed structural changes, deamidation of the962 NGR-motif which is usually hidden within the ceruloplasmin structure, and the gain of integrin-binding function. These effects occur owing to the presence of abnormal levels of hydrogen peroxide we detected in the CSF of PD patients. Interestingly, the pathological CSF's environment of PD patients promoted the same modifications in the exogenously added ceruloplasmin, which in turn resulted in loss of ferroxidase-activity and acquisition of integrin-binding properties.

Conclusions

We show that in pathological oxidative environment of PD-CSF the endogenous ceruloplasmin, in addition to loss-of-ferroxidase function, is modified as to gain integrin-binding function. These findings, beside the known role of ceruloplasmin in iron homeostasis, might have important pathogenic implications due to the potential triggering of signals mediated by the unusual integrin binding in cells of central nervous system. Furthermore, there are pharmacological implications because, based on data obtained in murine models, the administration of ceruloplasmin has been proposed as potential therapeutic treatment of PD, however, the observed CSF's pro-oxidant properties raise the possibility that in human the ceruloplasmin-based therapeutic approach might not be efficacious.

【 授权许可】

   
2015 Barbariga et al.

【 预 览 】
附件列表
Files Size Format View
20151106045218575.pdf 1897KB PDF download
Fig. 4. 95KB Image download
Fig. 3. 47KB Image download
Fig. 2. 56KB Image download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002; 22:439-58.
  • [2]De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G et al.. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007; 26:2823-31.
  • [3]Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M et al.. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci. 2011; 31:18568-77.
  • [4]Boll MC, Alcaraz-Zubeldia M, Montes S, Rios C. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem Res. 2008; 33:1717-23.
  • [5]Boll MC, Sotelo J, Otero E, Alcaraz-Zubeldia M, Rios C. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease. Neurosci Lett. 1999; 265:155-8.
  • [6]Texel SJ, Xu X, Harris ZL. Ceruloplasmin in neurodegenerative diseases. Biochem Soc Trans. 2008; 36:1277-81.
  • [7]Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA et al.. Ceruloplasmin dysfunction and therapeutic potential for parkinson disease. Ann Neurol. 2013; 73:554-59.
  • [8]Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci. 2002; 22:6578-86.
  • [9]Harris ZL, Klomp LW, Gitlin JD. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr. 1998; 67:972S-7S.
  • [10]McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008; 60:200-5.
  • [11]Ayton S, Lei P, Adlard PA, Volitakis I, Cherny RA, Bush AI et al.. Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegener. 2014; 9:27. BioMed Central Full Text
  • [12]Grimm S, Hoehn A, Davies KJ, Grune T. Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res. 2011; 45:73-88.
  • [13]Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004; 5:863-73.
  • [14]Barbariga M, Curnis F, Spitaleri A, Andolfo A, Zucchelli C, Lazzaro M et al.. Oxidation-induced structural changes of ceruloplasmin foster NGR-motifs deamidation that promote integrin binding and signalling. J Biol Chem. 2014; 289:3736-48.
  • [15]Curnis F, Longhi R, Crippa L, Cattaneo A, Dondossola E, Bachi A et al.. Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem. 2006; 281:36466-76.
  • [16]Corti A, Curnis F. Isoaspartate-dependent molecular switches for integrin-ligand recognition. J Cell Sci. 2011; 124:515-22.
  • [17]Irani DN. Properties and composition of normal cerebrospinal fluid. In: Cerebrospinal fluid in clinical practice. Irani DN, editor. Saunders-Elsevier, Philadelphia; 2009: p.69-92.
  • [18]Musci G, di Patti MC B, Fagiolo U, Calabrese L. Age-related changes in human ceruloplasmin. Evidence for oxidative modifications. J Biol Chem. 1993; 268:13388-95.
  • [19]Weintraub SJ, Deverman BE. Chronoregulation by asparagine deamidation. Sci STKE. 2007;409:re7.
  • [20]Robinson NE, Robinson ZW, Robinson BR, Robinson AL, Robinson JA, Robinson ML et al.. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J Pept Res. 2004; 63:426-36.
  • [21]Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S et al.. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. Parkinsonism Relat Disord. 2013; 19:47-52.
  • [22]Ingrosso D, Cimmino A, D'Angelo S, Alfinito F, Zappia V, Galletti P. Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydrogenase-deficient erythrocytes: role of oxidative stress. Eur J Biochem. 2002; 269:2032-9.
  • [23]Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y. Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J Biol Chem. 1992; 267:17047-54.
  • [24]Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T. Isoaspartate formation and neurodegeneration in Alzheimer’s disease. Arch Biochem Biophys. 2000; 381:225-34.
  • [25]Watanabe A, Takio K, Ihara Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. J Biol Chem. 1999; 274:7368-78.
  • [26]Grace EA, Busciglio J. Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci. 2003; 23:493-502.
  • [27]Caltagarone J, Jing Z, Bowser R. Focal adhesions regulate Abeta signaling and cell death in Alzheimer’s disease. Biochim Biophys Acta. 1772; 2007:438-45.
  • [28]Wright S, Malinin NL, Powell KA, Yednock T, Rydel RE, Griswold-Prenner I. Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiol Aging. 2007; 28:226-37.
  • [29]Tabner BJ, El-Agnaf OM, Turnbull S, German MJ, Paleologou KE, Hayashi Y et al.. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem. 2005; 280:35789-92.
  • [30]Gottfredsen RH, Larsen UG, Enghild JJ, Petersen SV. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition. Redox biology. 2013; 1:24-31.
  • [31]Vigneswara V, Cass S, Wayne D, Bolt EL, Ray DE, Carter WG. Molecular ageing of alpha- and Beta-synucleins: protein damage and repair mechanisms. PLoS One. 2013; 8: Article ID e61442
  • [32]Tokuda T, Qureshi MM, Ardah MT, Varghese S, Shehab SA, Kasai T et al.. Detection of elevated levels of alpha-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010; 75:1766-72.
  • [33]Park MJ, Cheon SM, Bae HR, Kim SH, Kim JW. Elevated levels of alpha-synuclein oligomer in the cerebrospinal fluid of drug-naive patients with Parkinson’s disease. J Clin Neurol. 2011; 7:215-22.
  • [34]Sierks MR, Chatterjee G, McGraw C, Kasturirangan S, Schulz P, Prasad S. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr Biol (Camb). 2011; 3:1188-96.
  • [35]Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled abeta, tau, and alpha-synuclein. Science. 2015; 349:1255555.
  • [36]Dev S, Kumari S, Singh N, Kumar Bal S, Seth P, Mukhopadhyay CK. Role of extracellular hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: implication in iron accumulation. Free Radic Biol Med. 2015; 86:78-89.
  • [37]Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox biology. 2014; 2:535-62.
  • [38]Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K et al.. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J. 2013; 32:3130-44.
  • [39]Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox biology. 2013; 1:304-12.
  • [40]Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V et al.. EFNS/MDS-ES/ENS recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013; 20:16-34.
  • [41]Thomas PK, Dyck P. Peripheral Neuropathy. 4th ed. Saunders; 2005.
  • [42]Cunniffe JG, Whitby-Strevens S, Wilcox MH. Effect of pH changes in cerebrospinal fluid specimens on bacterial survival and antigen test results. J Clin Pathol. 1996; 49:249-53.
  • [43]Curnis F, Cattaneo A, Longhi R, Sacchi A, Gasparri AM, Pastorino F et al.. Critical role of flanking residues in NGR-to-isoDGR transition and CD13/integrin receptor switching. J Biol Chem. 2010; 285:9114-23.
  • [44]MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B et al.. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010; 26:966-8.
  • [45]Sherrod SD, Myers MV, Li M, Myers JS, Carpenter KL, Maclean B et al.. Label-free quantitation of protein modifications by pseudo selected reaction monitoring with internal reference peptides. J Proteome Res. 2012; 11:3467-79.
  文献评价指标  
  下载次数:38次 浏览次数:23次