期刊论文详细信息
Respiratory Research
Conditionally induced RAGE expression by proximal airway epithelial cells in transgenic mice causes lung inflammation
Paul R Reynolds1  Steven M Knapp1  Jeff P Johnson1  Cameron M Jones1  Connor J Erickson1  Zac R Jergensen1  Alex J Wright1  Felix R Jimenez1  Emma Leatham1  Brock G Bennion1  B Garrett Bodine1 
[1] Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo 84602, UT, USA
关键词: Inflammation;    Lung;    CCSP;    Transgenic;    RAGE;   
Others  :  1137247
DOI  :  10.1186/s12931-014-0133-y
 received in 2014-06-26, accepted in 2014-10-16,  发布年份 2014
PDF
【 摘 要 】

Background

Receptors for advanced glycation end-products (RAGE) are multiligand cell-surface receptors expressed abundantly by distal pulmonary epithelium. Our lab has discovered RAGE-mediated effects in the orchestration of lung inflammation induced by tobacco smoke and environmental pollutants; however, the specific contribution of RAGE to the progression of proximal airway inflammation is still inadequately characterized.

Methods and results

We generated a Tet-inducible transgenic mouse that conditionally overexpressed RAGE using the club cell (Clara) secretory protein (CCSP) promoter expressed by club (Clara) cells localized to the proximal airway. RAGE was induced for 40 days from weaning (20 days of age) until sacrifice date at 60 days. Immunohistochemistry, immunoblotting, and qPCR revealed significant RAGE up-regulation when compared to non-transgenic controls; however, H&E staining revealed no detectible morphological abnormalities and apoptosis was not enhanced during the 40 days of augmentation. Freshly procured bronchoalveolar lavage fluid (BALF) from CCSP-RAGE TG mice had significantly more total leukocytes and PMNs compared to age-matched control littermates. Furthermore, CCSP-RAGE TG mice expressed significantly more tumor necrosis factor alpha (TNF-α), interleukin 7 (IL-7), and interleukin 14 (IL-14) in whole lung homogenates compared to controls.

Conclusions

These data support the concept that RAGE up-regulation specifically in lung airways may function in the progression of proximal airway inflammation.

【 授权许可】

   
2014 Bodine et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150315154654757.pdf 2860KB PDF download
Figure 6. 31KB Image download
Figure 5. 31KB Image download
Figure 4. 37KB Image download
Figure 3. 31KB Image download
Figure 2. 131KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P: RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999, 97:889-901.
  • [2]Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C: Blockade of amphoterin/RAGE signalling suppresses tumor growth and metastases. Nature (London) 2000, 405:354-360.
  • [3]Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Nagashima M, Morser J, Migheli A: RAGE and amyloid beta peptide neurotoxicity in Alzheimer’s disease. Nature (London) 1996, 382:685-691.
  • [4]Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP: Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res 2006, 14:475-488.
  • [5]Buckley ST and Ehrhardt C: The receptor for advanced glycation endproducts (RAGE) and the lung.J Biomed Biotechnol 2010, 2010:doi:10.1155/2010/917108
  • [6]Jemal A, Ward E, Hao Y, Thun M: Trends in the leading causes of death in the United States, 1970–2002. JAMA 2005, 294(10):1255-1259.
  • [7]Reynolds PR, Kasteler S, Cosio MG, Sturrock A, Huecksteadt TP, Hoidal JR: RAGE: developmental expression and positive feedback regulation by Egr-1 during cigarette smoke exposure in pulmonary epithelial cells. AJP: Lung Cell Mol Physiol 2008, 294(6):L1094-L1101.
  • [8]Reynolds PR, Kasteler SD, Schmitt RE, Hoidal JR: RAGE signals through Ras during tobacco smoke-induced pulmonary inflammation. Am J Resp Cell Mol Biol 2010, 45:411-418.
  • [9]Robinson AB, Stogsdill JA, Lewis JP, Wood TA, Reynolds PR: RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease. Frontiers in Resp Physiol 2012, 3:301.
  • [10]Robinson AB, Dickson KD, Bennion BG, Reynolds PR: RAGE signaling by alveolar macrophages influences tobacco smoke-induced inflammation. AJP: Lung Cell Mol Physiol 2012, 302(11):L1192-L1199.
  • [11]Downward J: Cell cycle: routine role for Ras. Curr Biol 1997, 7:R258-R260.
  • [12]Winston JT, Coats SR, Wang YZ, Pledger WJ: Regulation of the cell cycle machinery by oncogenic ras. Oncogene 1996, 12:127-134.
  • [13]Wu L, Ma L, Nicholson LF, Black PN: Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med 2011, 105(3):329-336.
  • [14]Zhang S, Xu N, Nie J, Dong L, Li J, Tong J: Proteomic alteration in lung disease of rates exposed to cigarette smoke. Toxicol Lett 2008, 178(3):191-196.
  • [15]Zhang SP, Wu YW, Wu ZZ, Liu HY, Nie JH, Tong J: Up-regulation of RAGE and S100A6 in rats exposed to cigarette smoke. Environ Toxicol Pharmacol 2009, 28(2):259-264.
  • [16]Ullah MA, Loh Z, Gan WJ, Zhang V, Yang H, Li JH, Yamamoto Y, Schmidt AM, Armour CL, Hughes JM, Phipps S, Sukkar MB: Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol 2014, S0091–6749(13):02939-4.
  • [17]Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. National Institutes of Health, Bethesda, MD; 2007.
  • [18]Peters JM, Avol E, Navidi W: A study of twelve Southern California communities with differing levels and types of air pollution: I. Prevalence of respiratory morbidity. Am J Respir Crit Care Med 1999, 159:760-767.
  • [19]Van der Vaart H, Postma DS: Acute effects of cigarette smoking on inflammation in healthy intermittent smokers. Respir Res 2005, 6:22. BioMed Central Full Text
  • [20]Boulet L-P, Lemiere C, Archambault F: Smoking and asthma: clinical and radiologic features, lung function, and airwary inflammation. Chest 2006, 129:661-668.
  • [21]Maier WC, Arrighi HM, Morray B: Indoor risk factors for asthma and wheezing among Seattle school children. Environ Health Perspect 1997, 105:208-214.
  • [22]Lam TH, Chung SF, Betson CL: Respiratory symptoms due to active and passive smoking in junior secondary school students in Hong Kong. Int J Epidemiol 1998, 27:41-48.
  • [23]Martinez FD, Wright AL, Taussig LM: Asthma and wheezing in the first six years of life. N Engl J Med 1995, 332:133-138.
  • [24]Reynolds PR, Stogsdill JA, Stogsdill MA, Heimann NB: Up-regulation of RAGE by alveolar epithelium influences cytodifferentiation and causes severe lung hypoplasia. Am J Respir Cell Mol Biol 2011, 45:1195-1202.
  • [25]Tichelaar JW, Lu W, Whitsett JA: Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem 2000, 275(16):11858-11864.
  • [26]Stogsdill MP, Stogsdill JA, Bodine BG, Fredrickson AC, Sefcik TL, Wood TA, Kasteler SK, Reynolds PR: Conditional RAGE over expression in the adult murine lung causes airspace enlargement and induces inflammation. Am J Resp Cell Mol Biol 2013, 49(1):128-134.
  • [27]Reynolds PR, Schmitt RE, Kasteler SD, Sturrock A, Sanders K, Bierhaus A, Nawroth PP, Paine R 3rd, Hoidal JR: Receptors for advanced glycation end-products targeting protect against hyperoxia-induced lung injury in mice. Am J Respir Cell Mol Biol 2010, 42(5):545-551.
  • [28]Rao NV, Argyle B, Xu Z, Reynolds PR, Walenga JM, Prechel M, Prestwich GD, Hoidal JR, Kennedy TP: Low anticoagulant heparin targets multiple sites in inflammation, suppresses heparin-induced thrombocytopenia and inhibits interaction of RAGE with its disparate ligands. Am J Physiol Cell Physiol 2010, 299(1):C97-C110.
  • [29]Reynolds PR, Wasley KM, Allison CH: Diesel particulate matter induces RAGE expression in pulmonary epithelium and RAGE signaling influences NF-κB-mediated inflammation. Environ Health Perspect 2010, 119(3):332-339.
  • [30]Reynolds PR, Mucenski ML, Le Cras TD, Nichols WC, Whitsett JA: Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem 2004, 279(35):37124-37132.
  • [31]Stogsdill JA, Stogsdill MA, Porter JL, Hancock JM, Robinson AB, Reynolds PR: Embryonic overexpression of receptors for advanced glycation end-products by alveolar epithelium induces an imbalance between proliferation and apoptosis. Am J Respir Cell Mol Biol 2012, 47:60-66.
  • [32]Winden DR, Ferguson NT, Bukey BR, Geyer AJ, Wright AJ, Jergensen ZR, Robinson AB, Stogsdill JR, Reynolds PR: Conditional over-expression of RAGE by embryonic alveolar epithelium compromises the respiratory membrane and impairs endothelial cell differentiation. Respir Res 2013, 14(1):108. BioMed Central Full Text
  • [33]Perl AK, Kist R, Shan Z, Scherer G, Whitsett JA: Normal lung development and function after Sox9 inactivation in the respiratory epithelium. Genesis 2005, 41:23-32.
  • [34]Lee CC, Lai YT, Chang HT, Liao JW, Shyu WC, Li CY, Wang CN: Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochem Pharmacol 2013, 86(7):940-949.
  • [35]Milutinovic PS, Alcorn JF, Englert JM, Crum LT, Oury TD: The receptor for advanced glycation end products is a central mediator of asthma pathogenesis. Am J Pathol 2012, 181(4):1215-1225.
  • [36]Zhou Y, Jiang YQ, Wang WX, Zhou ZX, Wang YG, Yang L, Ji YL: HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Hum Immunol 2012, 73(11):1171-1174.
  • [37]Clarke DL, Davis NH, Majithiya JB, Piper SC, Lewis A, Sleeman MA, Corkill DJ, May RD: Development of a mouse model mimicking key aspects of a viral asthma exacerbation. Clin Sci (Lond) 2014, 126(8):567-580.
  • [38]Idriss HT, Naismith JH: TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 2000, 50(3):184-195.
  • [39]Alek-Ardakani S, Croft M: Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res 2010, 30(4):205-218.
  • [40]Zelová H, Hošek J: TNF-α signaling and inflammation: interactions between old acquaintances. Inflamm Res 2013, 62(7):641-651.
  • [41]Namen AE, Schmierer AE, March CJ, Overell RW, Park LS, Urdal DL, Mochizuki DY: B cell precursor growth-promoting activity. Purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med 1988, 167(3):988-1002.
  • [42]Appasamy PM: Interleukin-7: biology and potential clinical applications. Cancer Invest 1993, 11(4):487-499.
  • [43]Thomas PS, Heywood G: Effects of inhaled tumour necrosis factor alpha in subjects with mild asthma. Thorax 2002, 57(9):774-778.
  • [44]Fuentes-Mattei E, Rivera E, Gioda A, Sanchez-Rivera D, Roman-Velazquez FR, Jimenez-Velez BD: Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM(2.5) organic extract from Puerto Rico. Toxicol Appl Pharmacol 2010, 243(3):381-389.
  • [45]Matías V, San Feliciano L, Fernández JE, Lapeña S, Garrido E, Ardura J, Soga MJ, Aragón MP, Remesal A, Benito F, Andrés J, Centeno F, Marugán V, Bachiller R, Bermejo-Martin JF: Host and environmental factors influencing respiratory secretion of pro-wheezing biomarkers in preterm children. Pediatr Allergy Immunol 2012, 23(5):441-447.
  • [46]Zhao YL, Duanmu HJ, Li L, Song CX, Zhao B: Study of the expression profile of immunogenesis associated genes in tuberculosis by microarray. Zhonghua Jie He He Hu Xi Za Zhi 2005, 28(5):301-304.
  文献评价指标  
  下载次数:50次 浏览次数:14次