BMC Veterinary Research | |
Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells | |
Caroline Leroux1  Jean-François Mornex2  Vincent Cottin2  François Guiguen1  Barbara Gineys1  Christine Dolmazon1  Sophie Desloire1  Alain Abi-Rizk1  Fabienne Archer1  | |
[1] INRA, UMR754, "Rétrovirus et Pathologie Comparée", UMS 3444 SFR BioSciences Gerland - Lyon Sud, Lyon F-69007, France;Hospices Civils de Lyon, Lyon F-69007, France | |
关键词: Maintenance; Differentiation; Sheep; CD34; CCSP; SP-C; Bronchioloalveolar; Progenitor; Lung; | |
Others : 1119414 DOI : 10.1186/1746-6148-9-224 |
|
received in 2013-04-24, accepted in 2013-10-28, 发布年份 2013 | |
【 摘 要 】
Background
Airways progenitors may be involved in embryogenesis and lung repair. The characterization of these important populations may enable development of new therapeutics to treat acute or chronic lung disease. In this study, we aimed to establish the presence of bronchioloalveolar progenitors in ovine lungs and to characterize their potential to differentiate into specialized cells.
Results
Lung cells were studied using immunohistochemistry on frozen sections of the lung. Immunocytochemistry and flow cytometry were conducted on ex-vivo derived pulmonary cells. The bronchioloalveolar progenitors were identified by their co-expression of CCSP, SP-C and CD34. A minor population of CD34pos/SP-Cpos/CCSPpos cells (0.33% ± 0.31) was present ex vivo in cell suspensions from dissociated lungs. Using CD34 magnetic positive-cell sorting, undifferentiated SP-Cpos/CCSPpos cells were purified (>80%) and maintained in culture. Using synthetic media and various extracellular matrices, SP-Cpos/CCSPpos cells differentiated into either club cells (formerly named Clara cells) or alveolar epithelial type-II cells. Furthermore, these ex vivo and in vitro derived bronchioloalveolar progenitors expressed NANOG, OCT4 and BMI1, specifically described in progenitors or stem cells, and during lung development.
Conclusions
We report for the first time in a large animal the existence of bronchioloalveolar progenitors with dual differentiation potential and the expression of specialized genes. These newly described cell population in sheep could be implicated in regeneration of the lung following lesions or in development of diseases such as cancers.
【 授权许可】
2013 Archer et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150208064724650.pdf | 2484KB | download | |
Figure 6. | 55KB | Image | download |
Figure 5. | 52KB | Image | download |
Figure 4. | 58KB | Image | download |
Figure 3. | 48KB | Image | download |
Figure 2. | 65KB | Image | download |
Figure 1. | 59KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Rock JR, Hogan BL: Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011, 27:493-512.
- [2]Rawlins EL, Hogan BL: Epithelial stem cells of the lung: privileged few or opportunities for many? Development 2006, 133:2455-2465.
- [3]Rock JR, Randell SH, Hogan BL: Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 2010, 3:545-556.
- [4]Kauffman SL: Cell proliferation in the mammalian lung. Int Rev Exp Pathol 1980, 22:131-191.
- [5]Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL: Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 2009, 106:12771-12775.
- [6]Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, Balasubramaniam V, Fredenburgh LE, Alex Mitsialis S, Kourembanas S, Kim CF: Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012, 302:L829-L837.
- [7]Evans MJ, Cox RA, Shami SG, Wilson B, Plopper CG: The role of basal cells in attachment of columnar cells to the basal lamina of the trachea. Am J Respir Cell Mol Biol 1989, 1:463-469.
- [8]Plopper CG, Mariassy AT, Lollini LO: Structure as revealed by airway dissection. A comparison of mammalian lungs. Am Rev Respir Dis 1983, 128:S4-S7.
- [9]Plopper CG, Mariassy AT, Wilson DW, Alley JL, Nishio SJ, Nettesheim P: Comparison of nonciliated tracheal epithelial cells in six mammalian species: ultrastructure and population densities. Exp Lung Res 1983, 5:281-294.
- [10]Rackley CR, Stripp BR: Building and maintaining the epithelium of the lung. J Clin Invest 2012, 122:2724-2730.
- [11]Harkema JR, Mariassy A, George JS, Hyde DM, Plopper CG: Epithelial Cells in the Conducting Airways : A Species Comparison. The airway epithelium: Physiology, pathophysiology and pharmacology. New York, NY, USA: Marcel Dekker; 1991.
- [12]Mariassy AT, Plopper CG: Tracheobronchial epithelium of the sheep: I. Quantitative light-microscopic study of epithelial cell abundance, and distribution. Anat Rec 1983, 205:263-275.
- [13]Irwin RS, Augustyn N, French CT, Rice J, Tedeschi V, Welch SJ, Editorial Leadership T: Spread the word about the journal in 2013: from citation manipulation to invalidation of patient-reported outcomes measures to renaming the Clara cell to new journal features. Chest 2013, 143:1-4.
- [14]Winkelmann A, Noack T: The Clara cell: a "Third Reich eponym"? Eur Respir J 2010, 36:722-727.
- [15]Woywodt A, Lefrak S, Matteson E: Tainted eponyms in medicine: the "Clara" cell joins the list. Eur Respir J 2010, 36:706-708.
- [16]Hsia CC: Signals and mechanisms of compensatory lung growth. J Appl Physiol 2004, 97:1992-1998.
- [17]Wuenschell CW, Sunday ME, Singh G, Minoo P, Slavkin HC, Warburton D: Embryonic mouse lung epithelial progenitor cells co-express immunohistochemical markers of diverse mature cell lineages. J Histochem Cytochem 1996, 44:113-123.
- [18]Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T: Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005, 121:823-835.
- [19]McQualter JL, Yuen K, Williams B, Bertoncello I: Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 2010, 107:1414-1419.
- [20]Rawlins EL: Lung epithelial progenitor cells: lessons from development. Proc Am Thorac Soc 2008, 5:675-681.
- [21]Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, Boston R, Woolfenden AE, Jacks T, Hoffman AM: Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 2008, 294:L1158-L1165.
- [22]Archer F, Jacquier E, Lyon M, Chastang J, Cottin V, Mornex JF, Leroux C: Alveolar type II cells isolated from pulmonary adenocarcinoma: a model for JSRV expression in vitro. Am J Respir Cell Mol Biol 2007, 36:534-540.
- [23]Porada CD, Harrison-Findik DD, Sanada C, Valiente V, Thain D, Simmons PJ, Almeida-Porada G, Zanjani ED: Development and characterization of a novel CD34 monoclonal antibody that identifies sheep hematopoietic stem/progenitor cells. Exp Hematol 2008, 36:1739-1749.
- [24]McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I: Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 2009, 27:623-633.
- [25]Snyder JC, Teisanu RM, Stripp BR: Endogenous lung stem cells and contribution to disease. J Pathol 2009, 217:254-264.
- [26]Martineau HM, Cousens C, Imlach S, Dagleish MP, Griffiths DJ: Jaagsiekte sheep retrovirus infects multiple cell types in the ovine lung. J Virol 2011, 85:3341-3355.
- [27]Murgia C, Caporale M, Ceesay O, Di Francesco G, Ferri N, Varasano V, de las Heras M, Palmarini M: Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair. PLoS Pathog 2011, 7:e1002014.
- [28]Platt JA, Kraipowich N, Villafane F, DeMartini JC: Alveolar type II cells expressing jaagsiekte sheep retrovirus capsid protein and surfactant proteins are the predominant neoplastic cell type in ovine pulmonary adenocarcinoma. Vet Pathol 2002, 39:341-352.
- [29]Martineau HM, Dagleish MP, Cousens C, Underwood C, Forbes V, Palmarini M, Griffiths DJ: Cellular differentiation and proliferation in the ovine lung during gestation and early postnatal development. J Comp Pathol 2013, 149(2-3):225-267.
- [30]Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, Zheng H, Ogorek B, Rondon-Clavo C, Ferreira-Martins J, et al.: Evidence for human lung stem cells. N Engl J Med 2011, 364:1795-1806.
- [31]Bracken AP, Helin K: Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Canc 2009, 9:773-784.
- [32]Kimura M, Takenobu H, Akita N, Nakazawa A, Ochiai H, Shimozato O, Fujimura Y, Koseki H, Yoshino I, Kimura H, et al.: Bmi1 regulates cell fate via tumor suppressor WWOX repression in small-cell lung cancer cells. Canc Sci 2011, 102:983-990.
- [33]Liu X, Driskell RR, Engelhardt JF: Stem cells in the lung. Meth Enzymol 2006, 419:285-321.
- [34]Grinstein E, Mahotka C: Stem cell divisions controlled by the proto-oncogene BMI-1. J Stem Cells 2009, 4:141-146.
- [35]Dovey JS, Zacharek SJ, Kim CF, Lees JA: Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci USA 2008, 105:11857-11862.
- [36]Cavaleri F, Scholer HR: Nanog: a new recruit to the embryonic stem cell orchestra. Cell 2003, 113:551-552.
- [37]Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003, 113:643-655.
- [38]Li Y, Zhao H, Lan F, Lee A, Chen L, Lin C, Yao Y, Li L: Generation of human-induced pluripotent stem cells from gut mesentery-derived cells by ectopic expression of OCT4/SOX2/NANOG. Cell Reprogram 2010, 12:237-247.
- [39]Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448:313-317.
- [40]Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ: Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451:141-146.
- [41]Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ: NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 2011, 89:2708-2716.
- [42]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
- [43]Li Y, Cang M, Lee AS, Zhang K, Liu D: Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 2011, 6:e15947.
- [44]Niwa H, Miyazaki J, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000, 24:372-376.
- [45]Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Canc Res 2010, 70:10433-10444.
- [46]Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J: Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 2006, 103:9530-9535.
- [47]Pan G, Thomson JA: Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 2007, 17:42-49.
- [48]Miyanari Y, Torres-Padilla ME: Control of ground-state pluripotency by allelic regulation of Nanog. Nature 2012, 483:470-473.