期刊论文详细信息
Particle and Fibre Toxicology
Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin
Lizette L Koekemoer2  Maureen Coetzee2  Hilary Ranson3  Nanette Coetzer1  Riann N Christian2  Luisa Nardini2 
[1] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa;Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;Vector Research Group, Liverpool School of Tropical Medicine, Liverpool, UK
关键词: kdr;    Detoxification enzymes;    Microarrays;    Insecticide resistance;    Anopheles arabiensis;   
Others  :  1231784
DOI  :  10.1186/1756-3305-5-113
 received in 2012-05-02, accepted in 2012-06-03,  发布年份 2012
PDF
【 摘 要 】

Background

The use of insecticides to control malaria vectors is essential to reduce the prevalence of malaria and as a result, the development of insecticide resistance in vector populations is of major concern. Anopheles arabiensis is one of the main African malaria vectors and insecticide resistance in this species has been reported in a number of countries. The aim of this study was to investigate the detoxification enzymes that are involved in An. arabiensis resistance to DDT and pyrethroids.

Methods

The detoxification enzyme profiles were compared between two DDT selected, insecticide resistant strains of An. arabiensis, one from South Africa and one from Sudan, using the An. gambiae detoxification chip, a boutique microarray based on the major classes of enzymes associated with metabolism and detoxification of insecticides. Synergist assays were performed in order to clarify the roles of over-transcribed detoxification genes in the observed resistance phenotypes. In addition, the presence of kdr mutations in the colonies under investigation was determined.

Results

The microarray data identifies several genes over-transcribed in the insecticide selected South African strain, while in the Sudanese population, only one gene, CYP9L1, was found to be over-transcribed. The outcome of the synergist experiments indicate that the over-transcription of detoxification enzymes is linked to deltamethrin resistance, while DDT and permethrin resistance are mainly associated with the presence of the L1014F kdr mutation.

Conclusions

These data emphasise the complexity associated with resistance phenotypes and suggest that specific insecticide resistance mechanisms cannot be extrapolated to different vector populations of the same species.

【 授权许可】

   
2012 Nardini et al.; licensee Biomed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151110191107994.pdf 1535KB PDF download
Figure 3. 23KB Image download
Figure 2. 25KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]World Health Organization: World Malaria Report 2010. WHO Press, Geneva, Switzerland; 2010. [http://whqlibdoc.who.int/publications/2010/9789241564106_eng.pdf webcite]
  • [2]Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H, Aseffa A, Gebre-Michael T, Elhassen I: Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors 2010, 3:40. BioMed Central Full Text
  • [3]Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Van Bortel W, Denis L, Tessema DA, Getachew Y, Coosemans M, Duchateau L, Speybroeck N: Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS One 2011, 6:e16066.
  • [4]Matowo J, Kulkarni MA, Mosha FW, Oxborough RM, Kitau JA, Tenu F, Rowland M: Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar. J 2010, 9:193. BioMed Central Full Text
  • [5]Abdalla H, Matambo TS, Koekemoer LL, Mnzava AP, Hunt RH, Coetzee M: Insecticide susceptibility and vector status of natural populations of Anopheles arabiensis from Sudan. Trans R Soc Trop Med Hyg 2008, 102:263-271.
  • [6]Hemingway J: Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Trans R Soc Trop Med Hyg 1983, 77:477-480.
  • [7]Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M: Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol 2003, 17:417-422.
  • [8]Mouatcho JC, Munhenga G, Hargreaves K, Brooke BD, Coetzee M, Koekemoer LL: Pyrethroid resistance in a major African malaria vector Anopheles arabiensis from Mamfene, northern KwaZulu-Natal, South Africa. S Afr J Sci 2009, 105:127-131.
  • [9]Casimiro S, Coleman M, Hemingway J, Sharp B: Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol 2006, 43:276-282.
  • [10]Feyereisen R: Molecular biology of insecticide resistance. Toxicol Lett 1995, 82/83:83-90.
  • [11]ffrench-Constant RH: Target site mediated insecticide resistance: what questions remain? Insect Biochem Mol Biol 1999, 29:397-403.
  • [12]Bergé J-P, Feyereisen R, Amichot M: Cytochrome P450 monooxygenases and insecticide resistance. In Insecticide resistance: from mechanisms to management. Edited by Denholm I, Pickett JA, Devonshire AL. CABI Publishing, UK; 1999.
  • [13]Feyereisen R: Insect P450 enzymes. Annu Rev Entomol 1999, 44:507-533.
  • [14]Hemingway J, Hawkes NJ, McCarroll L, Ranson H: The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 2004, 34:653-665.
  • [15]Ranson H, Nikou D, Hutchinson M, Wang X, Roth CW, Hemingway J, Collins FH: Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Mol Biol 2002, 11:409-418.
  • [16]Scott JG: Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 1999, 29:757-777.
  • [17]Hemingway J: The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol 2002, 30:1009-1015.
  • [18]Naidoo S, Denby KJ, Berger DK: Microarray experiments: considerations for experimental design. S Afr J Sci 2005, 101:347-354.
  • [19]David J-P, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H: The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci USA 2005, 102:4080-4084.
  • [20]Awolola TS, Brooke BD, Koekemoer LL, Coetzee M: Absence of the kdr mutation in the molecular ‘M’ form suggests different pyrethroid resistance mechanisms in the malaria mosquito Anopheles gambiae s.s. Trop Med Int Health 2003, 8:420-422.
  • [21]Diabaté A, Baldet T, Chandre F, Akogbeto M, Guiguemde TR, Darriet F, Brengues C, Guillet P, Hemingway J, Small G, Hougard JM: The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 2002, 67:617-622.
  • [22]Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P, Chouaibou M, Ndjemai H, Simard F: Short report: first report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 2006, 74:795-797.
  • [23]Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 1998, 7:179-184.
  • [24]Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbé C, Mimpfoundi R, Awono-Ambene HP, Simard F: Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect Dis 2009, 9:163. BioMed Central Full Text
  • [25]Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 2000, 9:491-497.
  • [26]Brooke BD: kdr: can a single mutation produce an entire insecticide resistance phenotype? Trans R Soc Trop Med Hyg 2008, 102:524-525.
  • [27]Brooke BD, Koekemoer LL: Major effects or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasit Vectors 2010, 3:74. BioMed Central Full Text
  • [28]Ortelli F, Rossiter LC, Vontas J, Ranson H, Hemingway J: Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem J 2003, 373:957-963.
  • [29]Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW, Collins FH, Hemingway J: Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 2001, 359:295-304.
  • [30]Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine MJI, Donnelly MJ: Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 2008, 4:e1000286.
  • [31]Müller P, Chouaïbou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H: Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol Ecol 2007, 17:1145-1155.
  • [32]Christian RN, Strode C, Ranson H, Coetzer N, Coetzee M, Koekemoer LL: Microarray analysis of a pyrethroid resistant African malaria vector, Anopheles funestus, from Southern Africa. Pestic Biochem Physiol 2011, 99:140-147.
  • [33]Vontas J, David J-P, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H: Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol 2007, 16:315-324.
  • [34]Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbé C, Yangalbé-Kalnoné E, Sagnon N, Simard F, Coetzee M: Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J 2009, 8:299. BioMed Central Full Text
  • [35]Coleman M, Coleman M, Mabuza AM, Kok G, Coetzee M, Durrheim DN: Evaluation of an operational malaria outbreak identification and response system in Mpumalanga Province. South Africa. Malar J 2008, 7:69.
  • [36]Maharaj R, Mthembu DJ, Sharp B: Impact of DDT re-introduction on malaria transmission in KwaZulu-Natal. S Afr Med J 2005, 95:871-874.
  • [37]World Health Organization: Test procedures for insecticide resistance monitoring in malaria vectors, bio efficacy and persistence of insecticides on treated surfaces. WHO, Geneva; 1998. WHO/CDS/CPC/MAL98.12 [http://www.who.int/whopes/resistance/en/ webcite]
  • [38]Smyth GK: Limma: linear models for microarry data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005.
  • [39]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:45.
  • [40]Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ, Müller P: Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Trans R Soc Trop Med Hyg 2009, 103:1121-1126.
  • [41]Matambo TS, Abdalla H, Brooke BD, Koekemoer LL, Mnzava A, Hunt RH, Coetzee M: Insecticide resistance in the malaria mosquito Anopheles arabiensis and association with the kdr mutation. Med Vet Entomol 2007, 21:97-102.
  • [42]Girardot F, Monnier V, Tricoire H: Genome wide analysis of common and specific stress responses in adult Drosophila melanogaster. BMC Genomics 2004, 5:74. BioMed Central Full Text
  • [43]Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David J-P: Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol 2008, 38:540-551.
  • [44]Strode C, Wondji CS, David J-P, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SHPP, Hemingway J, Black WC, Ranson H: Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 2007, 38:113-123.
  • [45]Rose RL, Goh D, Thompson DM, Verma JD, Heckel DG, Gahan LJ, Roe RM, Hodgson E: Cytochrome P450 (CYP)9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem Mol Biol 1997, 27:605-615.
  • [46]Zhou X, Sheng C, Li M, Wan H, Liu D, Qiu X: Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera. Pestic Biochem Physiol 2010, 97:209-213.
  • [47]Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG, ffrench-Constant RH: A single P450 allele associated with insecticide resistance in Drosophila. Science 2002, 297:2253-2256.
  • [48]Chiu T-L, Wen Z, Rupasinghe SG, Schuler M: Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci USA 2008, 105:8855-8860.
  • [49]Munhenga G, Koekemoer LL: Differential expression of cytochrome P450 genes in a laboratory selected Anopheles arabiensis colony. Afr J Biotech 2011, 10:12711-12716.
  • [50]Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C: Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 2008, 9:538. BioMed Central Full Text
  • [51]Brown AWA: Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc 1986, 2:123-140.
  • [52]Che-Mendoza A, Penilla RP, Rodríguez DA: Insecticide resistance and glutathione S-transferases in mosquitoes: a review. Afr J Biotech 2009, 8:1386-1397.
  • [53]Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H: The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics 2003, 4:35. BioMed Central Full Text
  • [54]Ranson H, Prapanthadara L, Hemingway J: Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J 1997, 324:97-102.
  • [55]Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E: Glutathione S-transferase in the defence against pyrerthoids in insects. Insect Biochem Mol Biol 1997, 31:313-319.
  • [56]Vontas JG, Small GJ, Hemingway J: Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilparvata lugens. Biochem J 2001, 357:65-72.
  • [57]Corona M, Robinson GE: Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol 2006, 15:687-701.
  • [58]Fridovich I: The biology of oxygen radicals. Science 1978, 201:875-880.
  • [59]Müller P, Donnelly MJ, Ranson H: Transcription profiling of a recently colonized pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics 2007, 8:36. BioMed Central Full Text
  文献评价指标  
  下载次数:38次 浏览次数:30次