期刊论文详细信息
BMC Genomics
Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing
Stéphane Reynaud3  Vincent Navratil4  Aurélie Bonin3  Muhammad Asam Riaz1  Rodolphe Poupardin2  Alexia Chandor-Proust3  Frédéric Faucon3  Jean-Philippe David3 
[1] Department of Entomology, University of Sargodha, Sargodha, Pakistan;Vector Biology group, Liverpool School of Tropical Medicine, Liverpool, UK;Environmental and Systems Biology (BEeSy), Université Grenoble Alpes, Grenoble, France;Pôle Rhône Alpes de Bioinformatique, Université Lyon 1, Villeurbanne, France
关键词: Transporters;    Cuticle;    CYP;    Cytochrome P450 monooxygenase;    Detoxification enzymes;    Dengue;    Mosquito;    Insecticide resistance;    RNA-seq;    RNA sequencing;   
Others  :  1217822
DOI  :  10.1186/1471-2164-15-174
 received in 2013-11-07, accepted in 2014-02-21,  发布年份 2014
PDF
【 摘 要 】

Background

Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur.

Results

After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation.

Conclusions

The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides.

【 授权许可】

   
2014 David et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708111930795.pdf 2560KB PDF download
Figure 6. 374KB Image download
Figure 5. 452KB Image download
Figure 4. 194KB Image download
Figure 3. 63KB Image download
Figure 2. 213KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lounibos LP: Invasions by insect vectors of human disease. Annu Rev Entomol 2002, 47:233-266.
  • [2]WHO: Dengue and dengue hemorrhagic fever. Fact sheet N 117 2009. http://www.who.int/mediacentre/factsheets/fs117/en/ webcite
  • [3]WHO: World Malaria Report. In World Health Organization technical report. Geneva, Switzerland: WHO press; 2012:195. http://www.who.int/malaria/publications/world_malaria_report_2012/report/en/ webcite ISBN 978 92 4 156453 3
  • [4]Hemingway J, Hawkes NJ, McCarroll L, Ranson H: The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 2004, 34(7):653-665.
  • [5]Hemingway J, Ranson H: Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 2000, 45:371-391.
  • [6]Nkya TE, Akhouayri I, Kisinza W, David JP: Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol 2013, 43:407-416.
  • [7]Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M, Zheng L: Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 2005, 14(2):179-183.
  • [8]Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O, Kobayashi M, Tomita T: First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis 2011, 64(3):217-221.
  • [9]Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 1998, 7(2):179-184.
  • [10]Martinez-Torres D, Chevillon C, Brun-Barale A, Bergé JB, Pasteur N, Pauron D: Voltage-dependent Na + channels in pyrethroid-resistant Culex pipiens mosquitoes. Pestic Sci 1999, 55:1012-1020.
  • [11]Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 2000, 9(5):491-497.
  • [12]Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M: The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 2004, 13(1):1-7.
  • [13]Feyereisen R: Insect cytochrome P450. In Comprehensive Molecular Insect Science. Edited by Gilbert LI, Iatrou K, Gill S. Amsterdam, Netherlands: Elsevier; 2005:1-77.
  • [14]Li X, Schuler MA, Berenbaum MR: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 2007, 52:231-253.
  • [15]Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, et al.: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 2010, 330(6000):86-88.
  • [16]Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, et al.: The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002, 298(5591):129-149.
  • [17]Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, et al.: Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, 316(5832):1718-1723.
  • [18]David JP, Ismail HM, Chandor-Proust A, Paine MJ: Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos Trans R Soc Lond B Biol Sci 2013, 368:20120429.
  • [19]David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H: The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A 2005, 102(11):4080-4084.
  • [20]Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC, Ranson H: Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 2008, 38(1):113-123.
  • [21]Vontas J, Ranson H, Alphey L: Transcriptomics and disease vector control. BMC Biol 2010, 8:52. BioMed Central Full Text
  • [22]Chiu TL, Wen Z, Rupasinghe SG, Schuler MA: Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci USA 2008, 105(26):8855-8860.
  • [23]Hardstone MC, Komagata O, Kasai S, Tomita T, Scott JG: Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect Mol Biol 2010, 19(6):717-726.
  • [24]Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJ, Wondji CS: Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc Natl Acad Sci USA 2013, 110(1):252-257.
  • [25]Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011, 12(2):87-98.
  • [26]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [27]Wilhelm BT, Landry JR: RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 2009, 48(3):249-257.
  • [28]Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WC: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 2009, 25(5):213-219.
  • [29]Labbe P, Lenormand T, Raymond M: On the worldwide spread of an insecticide resistance gene: a role for local selection. J Evol Biol 2005, 18(6):1471-1484.
  • [30]Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H: Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis 2012, 6(6):e1692.
  • [31]Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B: Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasites Vectors 2010, 3:67. BioMed Central Full Text
  • [32]Martin-Magniette ML, Aubert J, Cabannes E, Daudin JJ: Evaluation of the gene-specific dye bias in cDNA microarray experiments. Bioinformatics 2005, 21(9):1995-2000.
  • [33]Spiess AN, Mueller N, Ivell R: Amplified RNA degradation in T7-amplification methods results in biased microarray hybridizations. BMC Genomics 2003, 4(1):44. BioMed Central Full Text
  • [34]Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Zhong D, Li J, Githeko A, Yan G: Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq. PLoS One 2012, 7(9):e44607.
  • [35]Poupardin R, Riaz MA, Jones CM, Chandor-Proust A, Reynaud S, David JP: Do pollutants affect insecticide-driven gene selection in mosquitoes? Experimental evidence from transcriptomics. Aquat Toxicol 2012, 114–115:49-57.
  • [36]Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, Regent-Kloeckner M, David JP, Reynaud S: Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquat Toxicol 2013, 126:326-337.
  • [37]Luplertlop N, Surasombatpattana P, Patramool S, Dumas E, Wasinpiyamongkol L, Saune L, Hamel R, Bernard E, Sereno D, Thomas F, Piquemal D, Yssel H, Briant L, Missé D: Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus. PLoS Pathog 2011, 7(1):e1001252.
  • [38]Dimopoulos G: Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol 2003, 5(1):3-14.
  • [39]Alout H, Ndam NT, Sandeu MM, Djegbe I, Chandre F, Dabire RK, Djogbenou LS, Corbel V, Cohuet A: Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One 2013, 8(5):e63849.
  • [40]Rivero A, Vezilier J, Weill M, Read AF, Gandon S: Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 2010, 6(8):e1001000.
  • [41]Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C: Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 2008, 9:538. BioMed Central Full Text
  • [42]Vontas J, David JP, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H: Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol 2007, 16(3):315-324.
  • [43]David JP, Coissac E, Melodelima C, Poupardin R, Riaz MA, Chandor-Proust A, Reynaud S: Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics 2010, 11:216. BioMed Central Full Text
  • [44]Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C: Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 2010, 6(6):e1000999.
  • [45]Dittmer NT, Kanost MR: Insect multicopper oxidases: diversity, properties, and physiological roles. Insect Biochem Mol Biol 2010, 40(3):179-188.
  • [46]Gorman MJ, Dittmer NT, Marshall JL, Kanost MR: Characterization of the multicopper oxidase gene family in Anopheles gambiae. Insect Biochem Mol Biol 2008, 38(9):817-824.
  • [47]Courjaret R, Lapied B: Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol Pharmacol 2001, 60(1):80-91.
  • [48]Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B: Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 2007, 28(1):14-22.
  • [49]Bodereau-Dubois B, List O, Calas-List D, Marques O, Communal PY, Thany SH, Lapied B: Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides. J Pharmacol Exp Ther 2012, 341(2):326-339.
  • [50]Burmester T, Scheller K: Ligands and receptors: common theme in insect storage protein transport. Naturwissenschaften 1999, 86(10):468-474.
  • [51]Jinwal UK, Zakharkin SO, Litvinova OV, Jain S, Benes H: Sex-, stage- and tissue-specific regulation by a mosquito hexamerin promoter. Insect Mol Biol 2006, 15(3):301-311.
  • [52]Haunerland NH, Bowers WS: Binding of insecticides to lipophorin and arylphorin, 2 hemolymph-proteins of Heliothis zea. Arch Insect Biochem Physiol 1986, 3(1):87-96.
  • [53]Buss DS, Callaghan A: Interaction of pesticides with p-glycoprotein and other ABC proteins: a survey of the possible importance to insecticide, herbicide and fungicide resistance. Pest Biochem Physiol 2008, 90(3):141-153.
  • [54]Jones CM, Toe HK, Sanou A, Namountougou M, Hughes A, Diabate A, Dabire R, Simard F, Ranson H: Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso Burkina Faso. PLoS One 2012, 7(9):e45995.
  • [55]Chandor-Proust A, Bibby J, Regent-Kloeckner M, Roux J, Guittard-Crilat E, Poupardin R, Riaz MA, Paine M, Dauphin-Villemant C, Reynaud S, David JP: The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 2013, 455(1):75-85.
  • [56]Swenson TL, Casida JE: Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice. Toxicol Sci 2013, 133(1):22-28.
  • [57]Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, Hemingway J, Paine MJ, Ranson H, Donnelly MJ: Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A 2012, 109(16):6147-6152.
  • [58]Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian LY, Muller P, Nikou D, Steven A, Hemingway J, Sutcliffe MJ, Paine MJ: Cytochrome P450 6 M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 2011, 41(7):492-502.
  • [59]Irving H, Riveron JM, Ibrahim SS, Lobo NF, Wondji CS: Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity 2012, 109(6):383-392.
  • [60]Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW, Goldstein JA: Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001, 299(3):825-831.
  • [61]Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA: Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001, 11(7):597-607.
  • [62]Eiselt R, Domanski TL, Zibat A, Mueller R, Presecan-Siedel E, Hustert E, Zanger UM, Brockmoller J, Klenk HP, Meyer UA, Khan KK, He YA, Halpert JR, Wojnowski L: Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 2001, 11(5):447-458.
  • [63]Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T: Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics 2000, 10(4):343-353.
  • [64]Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W, Raunio H, Crespi CL, Gonzalez FJ: CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 2000, 67(1):48-56.
  • [65]Bell CG, Beck S: Advances in the identification and analysis of allele-specific expression. Genome Med 2009, 1(5):56. BioMed Central Full Text
  • [66]Gaur U, Li K, Mei S, Liu G: Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genet 2013, 54(3):271-283.
  • [67]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [68]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7(10):986-995.
  • [69]Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J Royal Stat Soc B 1995, 57:289-300.
  • [70]Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Annu Stat 2001, 29(4):1165-1188.
  • [71]Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol 2006, 411:134-193.
  文献评价指标  
  下载次数:91次 浏览次数:19次