期刊论文详细信息
Particle and Fibre Toxicology
Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen
José de la Fuente2  Rossella Colomba Lelli4  Santo Caracappa4  Christian Gortázar3  Joaquín Vicente3  Antonio Piazza4  Rosaria Disclafani4  Salvatore Briganò4  Maria Elena Scariano4  Marcellocalogero Blanda4  Salvatore Scimeca4  José M Pérez de la Lastra3  Isabel G Fernández de Mera3  Valeria Blanda4  Juan A Moreno-Cid3  Alessandra Torina1 
[1] Faculty of Veterinary Medicine, Universitá degli Studi di Messina, Messina, Sicily, Italy;Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA;SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain;Intituto Zooprofilattico Sperimentale della Sicilia, 90129, Palermo, Sicily, Italy
关键词: Ovine;    Bovine;    Theileria;    Babesia;    Anaplasma;    Vaccine;    Tick;    Subolesin;   
Others  :  823320
DOI  :  10.1186/1756-3305-7-10
 received in 2013-11-13, accepted in 2014-01-05,  发布年份 2014
PDF
【 摘 要 】

Background

Despite the use of chemical acaricides, tick infestations continue to affect animal health and production worldwide. Tick vaccines have been proposed as a cost-effective and environmentally friendly alternative for tick control. Vaccination with the candidate tick protective antigen, Subolesin (SUB), has been shown experimentally to be effective in controlling vector infestations and pathogen infection. Furthermore, Escherichia coli membranes containing the chimeric antigen composed of SUB fused to Anaplasma marginale Major Surface Protein 1a (MSP1a) (SUB-MSP1a) were produced using a simple low-cost process and proved to be effective for the control of cattle tick, Rhipicephalus (Boophilus) microplus and R. annulatus infestations in pen trials. In this research, field trials were conducted to characterize the effect of vaccination with SUB-MSP1a on tick infestations and the prevalence of tick-borne pathogens in a randomized controlled prospective study.

Methods

Two cattle and two sheep farms with similar geographical locations and production characteristics were randomly assigned to control and vaccinated groups. Ticks were collected, counted, weighed and classified and the prevalence of tick-borne pathogens at the DNA and serological levels were followed for one year prior to and 9 months after vaccination.

Results

Both cattle and sheep developed antibodies against SUB in response to vaccination. The main effect of the vaccine in cattle was the 8-fold reduction in the percent of infested animals while vaccination in sheep reduced tick infestations by 63%. Female tick weight was 32-55% lower in ticks collected from both vaccinated cattle and sheep when compared to controls. The seroprevalence of Babesia bigemina was lower by 30% in vaccinated cattle, suggesting a possible role for the vaccine in decreasing the prevalence of this tick-borne pathogen. The effect of the vaccine in reducing the frequency of one A. marginale msp4 genotype probably reflected the reduction in the prevalence of a tick-transmitted strain as a result of the reduction in the percent of tick-infested cattle.

Conclusions

These data provide evidence of the dual effect of a SUB-based vaccine for controlling tick infestations and pathogen infection/transmission and provide additional support for the use of the SUB-MSP1a vaccine for tick control in cattle and sheep.

【 授权许可】

   
2014 Torina et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713002227538.pdf 2172KB PDF download
Figure 11. 41KB Image download
Figure 10. 65KB Image download
Figure 9. 69KB Image download
Figure 8. 67KB Image download
Figure 7. 46KB Image download
Figure 6. 51KB Image download
Figure 5. 114KB Image download
Figure 4. 101KB Image download
Figure 3. 87KB Image download
Figure 2. 72KB Image download
Figure 1. 195KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]de la Fuente J, Rodríguez M, Redondo M, Montero C, García-García JC, Méndez L, Serrano E, Valdés M, Enríquez A, Canales M, Ramos E, de Armas CA, Rey S, Rodríguez JL, Artiles M, García L: Field studies and cost-effectiveness analysis of vaccination with GavacTM against the cattle tick Boophilus microplus. Vaccine 1998, 16:366-373.
  • [2]de la Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE: Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 2008, 13:6938-6946.
  • [3]Caracappa S: Livestock production and animal health in Sicily, Italy. Parassitologia 1999, 41(Suppl. 1):17-23.
  • [4]Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molento MB, Bordin EL, Arantes GJ: Tick control: an industry point of view. Parasitol 2004, 129:S427-S442.
  • [5]de la Fuente J, Kocan KM: Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol 2006, 28:275-283.
  • [6]Willadsen P: Tick control: thoughts on a research agenda. Vet Parasitol 2006, 138:161-168.
  • [7]de la Fuente J: Vaccines for vector control: exciting possibilities for the future. Vet J 2012, 194:139-140.
  • [8]de la Fuente J, Almazán C, Canales M, de la Lastra JM P, Kocan KM, Willadsen P: A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev 2007, 8:23-28.
  • [9]Almazán C, Kocan KM, Bergman DK, Garcia-Garcia JC, Blouin EF, de la Fuente J: Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine 2003, 21:1492-1501.
  • [10]de la Fuente J, Moreno-Cid JA, Canales M, Villar M, de la Lastra JM P, Kocan KM, Galindo RC, Almazán C, Blouin EF: Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet Parasitol 2011, 181:17-22.
  • [11]de la Fuente J, Moreno-Cid JA, Villar M, Galindo RC, Almazán C, Kocan KM, Merino O, de la Lastra JM P, Estrada-Peña A, Blouin EF: Subolesin/Akirin vaccines for the control of arthropod vectors and vector-borne pathogens. Transb Emerg Dis 2013. in press
  • [12]Almazán C, Moreno-Cantú O, Moreno-Cid JA, Galindo RC, Canales M, Villar M, de la Fuente J: Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 2012, 30:265-272.
  • [13]Canales M, Moreno-Cid JA, Almazán C, Villar M, de la Fuente J: Bioprocess design and economics of recombinant BM86/BM95 antigen production for anti-tick vaccines. Biochem Eng J 2010, 52:79-90.
  • [14]Canales M, Almazán C, de la Lastra JM P, de la Fuente J: Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli. J Biotechnol 2008, 135:326-332.
  • [15]Manilla G: Fauna D’Italia. Acari: Ixodida. first edition. Calderini, Bologna; 1998.
  • [16]Stuen S, Nevland S, Moum T: Fatal cases of tick-borne fever (TBF) in sheep caused by several 16S rRNA gene variants of Anaplasma phagocytophilum. Ann NY Acad Sci 2003, 990:443-434.
  • [17]de la Fuente J, Vicente J, Höfle U, Ruiz-Fons F, de Mera IG F, Van Den Bussche RA, Kocan KM, Gortazar C: Anaplasma infection in free-ranging Iberian red deer in the region of Castilla-La Mancha, Spain. Vet Microbiol 2004, 100:163-173.
  • [18]Torina A, Agnone A, Blanda V, Alongi A, D'Agostino R, Caracappa S, Marino AM, Di Marco V, de la Fuente J: Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks Tick Borne Dis 2012, 3:283-287.
  • [19]de la Fuente J, Massung RF, Wong SJ, Chu FK, Lutz H, Meli M, von Loewenich FD, Grzeszczuk A, Torina A, Caracappa S, Mangold AJ, Naranjo V, Stuen S, Kocan KM: Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. J Clin Microbiol 2005, 43:1309-1317.
  • [20]Figueroa JV, Chieves LP, Johnson GS, Buening GM: Multiplex polimerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet Parasitol 1993, 50:69-81.
  • [21]D’Oliveira C, van der Weide M, Habela MA, Jacquiet P, Jongejan F: Detection of Theileria annulata in blood samples of carriers by PCR. J Clin Microbiol 1995, 33:1665-2669.
  • [22]Aktaş M, Altay K, Dumanli N: Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Vet Parasitol 2005, 133:277-281.
  • [23]Altay K, Dumanli N, Holman PJ, Aktas M: Detection of Theileria ovis in naturally infected sheep by nested PCR. Vet Parasitol 2005, 127:99-104.
  • [24]To H, Kako N, Zhang GQ, Otsusa H, Ogawa M, Ochiai O, Nguyen Sa V, Yamaguchi T, Fukushi H, Nagaoka N, Akiyama M, Amano K, Hirai K: Q fever pneumonia in children in Japan. J Clin Microbiol 1996, 34:647-651.
  • [25]Merino O, Almazán C, Canales M, Villar M, Moreno-Cid JA, Galindo RC, de la Fuente J: Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine 2011, 29:8575-8579.
  • [26]Burridge MJ, Kimber CD: The indirect fluorescent antibody test for experimental East Coast fever (Theileria parva infection of cattle). Evaluation of a cell culture schizont antigen. Res Vet Sci 1972, 13:451-455.
  • [27]Torina A, Khoury C, Caracappa S, Maroli M: Ticks infesting livestock on farms in Western Sicily, Italy. Exp Appl Acarol 2006, 38:75-86.
  • [28]Torina A, Alongi A, Naranjo V, Estrada-Peña A, Vicente J, Scimeca S, Marino AMF, Salina F, Caracappa S, de la Fuente J: Prevalence and genotypes of Anaplasma species and habitat suitability for ticks in a Mediterranean ecosystem. Appl Env Microbiol 2008, 74:7578-7584.
  • [29]Merino M, Antunes S, Mosqueda J, Moreno-Cid JA, de la Lastra JM P, Rosario-Cruz R, Rodríguez S, Domingos A, de la Fuente J: Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine 2013. in press
  • [30]de la Fuente J, Torina A, Caracappa S, Tumino G, Furlá R, Almazán C, Kocan KM: Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. Vet Parasitol 2005, 133:357-362.
  • [31]Torina A, Vicente J, Alongi A, Scimeca S, Turlá R, Nicosia S, Di Marco V, Caracappa S, de la Fuente J: Observed prevalence of tick-borne pathogens in domestic animals in Sicily, Italy during 2003–2005. Zoonoses Public Health 2007, 54:8-15.
  • [32]Torina A, Alongi A, Scimeca S, Vicente J, Caracappa S, de la Fuente J: Prevalence of tick-borne pathogens in ticks in Sicily. Transb Emerg Dis 2010, 57:46-48.
  • [33]Villar M, Torina A, Nuñez Y, Zivkovic Z, Marina A, Alongi A, Scimeca S, La Barbera G, Caracappa S, Vázquez J, de la Fuente J: Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci 2010, 8:43. BioMed Central Full Text
  • [34]Capuano F, Landolfi MC, Monetti DM: Influence of three types of farm management on the seroprevalence of Q fever as assessed by an indirect immunofluorescence assay. Vet Rec 2001, 149:669-671.
  • [35]Georgiev M, Afonso A, Neubauer H, Needham H, Thiery R, Rodolakis A, Roest H, Stark K, Stegeman J, Vellema P, van der Hoek W, More S: Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro Surveill 2013, 18(8):pii=20407.
  • [36]Torina A, Galindo RC, Vicente J, Di Marco V, Russo M, Aronica V, Fiasconaro M, Scimeca S, Alongi A, Caracappa S, Kocan KM, Gortazar C, de la Fuente J: Characterization of Anaplasma phagocytophilum and A. ovis infection in a naturally infected sheep flock with poor health condition. Trop Anim Health Prod 2010, 42:1327-1331.
  • [37]Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA: The Natural History of Anaplasma marginale. Vet Parasitol 2010, 167:95-107.
  • [38]de la Fuente J, Torina A, Naranjo V, Caracappa S, Vicente J, Mangold AJ, Vicari D, Alongi A, Scimeca S, Kocan KM: Genetic diversity of Anaplasma marginale strains from cattle farms with different husbandry systems in the Province of Palermo, Sicily. J Vet Med B 2005, 52:226-229.
  • [39]De la Fuente J, Ruybal P, Mtshali MS, Naranjo V, Shuqing L, Mangold AJ, Rodríguez SD, Jiménez R, Vicente J, Moretta R, Torina A, Almazán C, Mbati PM, Torioni De Echaide S, Farber M, Rosario-Cruz R, Gortazar C, Kocan KM: Analysis of world strains of Anaplasma marginale using major surface protein 1a repeat sequences. Vet Microbiol 2007, 119:382-390.
  • [40]Cabezas-Cruz A, Passos LMF, Lis K, Kenneil R, Valdés JJ, Ferrolho J, Tonk M, Pohl AE, Grubhoffer L, Zweygarth E, Shkap V, Ribeiro MFB, Estrada-Peña A, Kocan KM, de la Fuente J: Functional and immunological relevance of Anaplasma marginale major surface protein 1a sequence and structural analysis. PLoS ONE 2013, 8(6):e65243.
  • [41]de la Fuente J, Atkinson MW, Naranjo V, de Mera IG F, Mangold AJ, Keating KA, Kocan KM: Sequence analysis of the msp4 gene of Anaplasma ovis strains. Vet Microbiol 2007, 119:375-381.
  • [42]de León AA P, Strickman DA, Knowles DP, Fish D, Thacker E, de la Fuente J, Krause P, Wikel SK, Miller RS, Wagner GG, Almazán C, Hillman R, Messenger MT, Ugstad PO, Duhaime RA, Teel PD, Ortega-Santos A, Hewitt DG, Bowers EJ, Bent S, Cochran MH, McElwain TF, Scoles GA, Suarez CE, Davey R, Howell Freeman JM, Lohmeyer K, Li A, Guerrero F, Kammlah D, Phillips P, Pound JM: for the Group for Emerging Babesioses and One Health Research and Development in the U.S. One health approach to identify research needs in bovine and human babesioses: Workshop report. Parasit Vectors 2010, 3:36. BioMed Central Full Text
  文献评价指标  
  下载次数:54次 浏览次数:16次