期刊论文详细信息
Virology Journal
Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host
Jianhe Sun1  Hengan Wang1  Xiangpeng Meng1  Bin Du1  Wenhui Ji1  Yaxian Yan1  Yibo Shi1 
[1] Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai, People's Republic of China
关键词: Lysin;    Holin;    Bacteriophage;    Streptococcus suis;   
Others  :  1154846
DOI  :  10.1186/1743-422X-9-70
 received in 2011-10-16, accepted in 2012-03-22,  发布年份 2012
PDF
【 摘 要 】

Background

Holins are a group of phage-encoded membrane proteins that control access of phage-encoded endolysins to the peptidoglycan, and thereby trigger the lysis process at a precise time point as the 'lysis clock'. SMP is an isolated and characterized Streptococcus suis lytic phage. The aims of this study were to determine the holin gene, HolSMP, in the genome of SMP, and characterized the function of holin, HolSMP, in phage infection.

Results

HolSMP was predicted to encode a small membrane protein with three hydrophobic transmembrane helices. During SMP infections, HolSMP was transcribed as a late gene and HolSMP accumulated harmlessly in the cell membrane before host cell lysis. Expression of HolSMP in Escherichia coli induced an increase in cytoplasmic membrane permeability, an inhibition of host cell growth and significant cell lysis in the presence of LySMP, the endolysin of phage SMP. HolSMP was prematurely triggered by the addition of energy poison to the medium. HolSMP complemented the defective λ S allele in a non-suppressing Escherichia coli strain to produce phage plaques.

Conclusions

Our results suggest that HolSMP is the holin protein of phage SMP and a two-step lysis system exists in SMP.

【 授权许可】

   
2012 Shi et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407110727898.pdf 2011KB PDF download
Figure 6. 38KB Image download
Figure 5. 35KB Image download
Figure 4. 31KB Image download
Figure 3. 94KB Image download
Figure 2. 34KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Gründling A, Bläsi U, Young R: Biochemical and genetic evidence for three transmembrane domains in the class I holin, lambda S. J Biol Chem 2000, 275:769-776.
  • [2]Takáč M, Witte A, Bläsi U: Functional analysis of the lysis genes of Staphylococcus aureu phage P68 in Escherichia coli. Microbiology 2005, 151:2331-2342.
  • [3]Pang T, Savva CG, Fleming KG, Struck DK, Young R: Structure of the lethal phage pinhole. Proc Natl Acad Sci USA 2009, 106:18966-18971.
  • [4]Zimmer M, Vukov N, Scherer S, Loessner MJ: The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringen strains. Appl Environ Microbiol 2002, 68:5311-5317.
  • [5]Seal BS, Fouts DE, Simmons M, Garrish JK, Kuntz RL, Woolsey R, Schegg KM, Kropinski AM, Ackermann HW, Siragusa GR: Clostridium perfringen bacteriophages PhiCP39O and PhiCP26F: genomic organization and proteomic analysis of the virions. Arch Virol 2011, 156:25-35.
  • [6]Tran TA, Struck DK, Young R: Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition. J Bacteriol 2005, 187:6631-6640.
  • [7]White R, Tran TA, Dankenbring CA, Deaton J, Young R: The N-terminal transmembrane domain of lambda S is required for holin but not antiholin function. J Bacteriol 2010, 192:725-733.
  • [8]Krupovič M, Bamford DH: Holin of bacteriophage lambda: structural insights into a membrane lesion. Mol Microbiol 2008, 69:781-783.
  • [9]Golec P, Wiczk A, Majchrzyk A, Łoś JM, Węgrzyn G, Łoś M: A role for accessory genes rI.-1 and rI.1 in the regulation of lysis inhibition by bacteriophage T4. Virus Genes 2010, 41:459-468.
  • [10]Rydman PS, Bamford DH: Identification and mutational analysis of bacteriophage PRD1 holin protein P35. J Bacteriol 2003, 185:3795-3803.
  • [11]Žiedaitė G, Daugelavičius R, Bamford JK, Bamford DH: The Holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 2005, 187:5397-5405.
  • [12]Horii T, Suzuki Y, Kobayashi M: Characterization of a holin (HolNU3-1) in methicillin-resistant Staphylococcus aureu host. FEMS Immunol Med Microbiol 2002, 34:307-310.
  • [13]Kashige N, Nakashima Y, Miake F, Watanabe K: Cloning, sequence analysis, and expression of Lactobacillus case phage PL-1 lysis genes. Arch Virol 2000, 145:1521-1534.
  • [14]Labrie S, Vukov N, Loessner MJ, Moineau S: Distribution and composition of the lysis cassette of Lactococcus lacti phages and functional analysis of bacteriophage ul36 holin. FEMS Microbiol Lett 2004, 233:37-43.
  • [15]Wang S, Kong J, Zhang X: Identification and characterization of the two-component cell lysis cassette encoded by temperate bacteriophage phiPYB5 of Lactobacillus fermentu. J Appl Microbiol 2008, 105:1939-1944.
  • [16]Sheehan MM, Stanley E, Fitzgerald GF, van Sinderen D: Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilu. Appl Environ Microbiol 1999, 65:569-577.
  • [17]Diaz E, Munthali M, Lunsdorf H, Holtje JV, Timmis KN: The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in gram-negativebacteria: triggering of the major pneumococcal autolysin in Escherichia col. Mol Microbiol 1996, 19:667-681.
  • [18]Martín AC, López R, García P: Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J Bacteriol 1998, 180:210-217.
  • [19]Vukov N, Moll I, Bläsi U, Scherer S, Loessner MJ: Functional regulation of the Listeria monocytogene bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain. Mol Microbiol 2003, 48:173-186.
  • [20]Loessner MJ, Maier SK, Daubek-Puza H, Wendlinger G, Scherer S: Three Bacillus cereu bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. J Bacteriol 1997, 179:2845-2851.
  • [21]Gottschalk M, Segura M: The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. Vet Microbiol 2000, 76:259-272.
  • [22]Ma YL, Lu CP: Isolation and identification of a bacteriophage capable of infecting Streptococcus sui type 2 strains. Vet Microbiol 2008, 132:340-347.
  • [23]Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A: Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2010, 1:6-16.
  • [24]Wang Y, Sun JH, Lu CP: Purified recombinant phage lysin LySMP: an extensive spectrum of lytic activity for swine streptococci. Curr Microbiol 2009, 58:609-615.
  • [25]Meng X, Shi Y, Ji W, Meng X, Zhang J, Wang H, Lu C, Sun J, Yan Y: Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen, Streptococcus suis. Appl Environ Microbiol 2011, 77:8272-8279.
  • [26]Steiner M, Bläsi U: Charged amino-terminal amino acids affect the lethal capacity of Lambda lysis proteins S107 and S105. Mol Microbiol 1993, 8:525-533.
  • [27]Gründling A, Smith DL, Bläsi U, Young R: Dimerization between the holin and holin inhibitor of phage λ. J Bacteriol 2000, 182:6075-6081.
  • [28]Sambrook J, Russell DW: Bacteriophage λ and its vectors: purification of bacteriophage λ particles by centrifugation through a glycerol step gradient. In Molecular Cloning: A Laboratory Manual. Volume 1. 3rd edition. Edited by Jan Argentine. New York: Cold Spring Harbor Laboratory Press; 2001::52-53.
  • [29]Smith DL, Chang CY, Young R: The lambda holin accumulates beyond thelethal triggering concentration under hyperexpression conditions. Gene Expr 1998, 7:39-52.
  • [30]Chang CY, Nam K, Young R: gene expression and the timing of lysis by bacteriophage lambda. J Bacteriol 1995, 177:3283-3294.
  • [31]Farkašovská J, Godány A, Vlček Č: Identification of a holin encoded by the Streptomyces aureofacien phage micro1/6; functional analysis in Escherichia col system. Folia Microbiol (Praha) 2004, 49:679-684.
  文献评价指标  
  下载次数:41次 浏览次数:3次