期刊论文详细信息
Proteome Science
Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome
Michelle Momany1  Rembert Pieper3  William C Nierman3  David S Perlin2  Scott N Peterson3  Robert D Fleischmann3  Susan Hastings1  Steven E Cagas2  Natalie D Fedorova3  Moo-Jin Suh3 
[1] Department of Plant Biology, University of Georgia, Athens, GA, USA;University of Medicine and Dentistry of New Jersey, Newark, NJ, USA;The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
关键词: Hypothetical proteins;    Fungi;    Conidia;    Spore;    Germination;    Aspergillus fumigatus;    Shotgun proteomics;    APEX;    LC-MS/MS;    Mass spectrometry;   
Others  :  817283
DOI  :  10.1186/1477-5956-10-30
 received in 2011-12-13, accepted in 2012-04-30,  发布年份 2012
PDF
【 摘 要 】

Background

The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process.

Results

To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle.

Conclusions

The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.

【 授权许可】

   
2012 Suh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710234842442.pdf 1156KB PDF download
Figure 4. 94KB Image download
acp-12-4127-2012.pdf 684KB PDF download
Figure 2. 19KB Image download
Figure 1. 10KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

【 参考文献 】
  • [1]Denning DW: Invasive aspergillosis. Clin Infect Dis 1998, 26:781-803.
  • [2]Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, et al.: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005, 438:1151-1156.
  • [3]Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, et al.: Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genetics 2008, 4:13.
  • [4]Kniemeyer O: Proteomics of eukaryotic microorganisms: The medically and biotechnologically important fungal genus Aspergillus. Proteomics 2011, 11:3232-3243.
  • [5]Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U: Proteome of Conidial Surface Associated Proteins of Aspergillus fumigatus Reflecting Potential Vaccine Candidates and Allergens. J Proteome Res 2006, 5:954-962.
  • [6]Teutschbein J, Albrecht D, Pötsch M, Guthke R, Aimanianda V, Clavaud Cc, Latge J-P, Brakhage AA, Kniemeyer O: Proteome Profiling and Functional Classification of Intracellular Proteins from Conidia of the Human-Pathogenic Mold Aspergillus fumigatus. J Proteome Res 2010, 9:3427-3442.
  • [7]Singh B, Sharma GL, Oellerich M, Kumar R, Singh S, Bhadoria DP, Katyal A, Reichard U, Asif AR: Novel Cytosolic Allergens of Aspergillus fumigatus Identified from Germinating Conidia. J Proteome Res 2010, 9:5530-5541.
  • [8]Singh B, Oellerich M, Kumar R, Kumar M, Bhadoria DP, Reichard U, Gupta VK, Sharma GL, Asif AR: Immuno-Reactive Molecules Identified from the Secreted Proteome of Aspergillus fumigatus. J Proteome Res 2010, 9:5517-5529.
  • [9]Lottspeich F: Top Down and Bottom Up Analysis of Proteins (Focusing on Quantitative Aspects). In Protein and Peptide Analysis by LC-MS: Experimental Strategies. Edited by Letzel T. Cambridge, United Kingdom: The Royal Society of Chemistry; 2011:1-10.
  • [10]Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnol 2007, 25:117-124.
  • [11]Cagas SE, Jain MR, Li H, Perlin DS: The Proteomic Signature of Asergillus fumigatus During Early Development. Mol Cell Proteomics 2011, 10:mcp.M111.010108.
  • [12]Lamarre C, Sokol S, Debeaupuis JP, Henry C, Lacroix C, Glaser P, Coppee JY, Francois JM, Latge JP: Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatusconidia. BMC Genomics 2008, 9:15. BioMed Central Full Text
  • [13]Momany M, Taylor I: Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation. Microbiology 2000, 146:3279-3284.
  • [14]Momany M, Lindsey R, Hill TW, Richardson EA, Momany C, Pedreira M, Guest GM, Fisher JF, Hessler RB, Roberts KA: The Aspergillus fumigatus cell wall is organized in domains that are remodelled during polarity establishment. Microbiology 2004, 150:3261-3268.
  • [15]McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, Loss O, Cairns T, Goldman G, Armstrong-James D, et al.: Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathogens 2008, 4:21.
  • [16]Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues AR, Wang R, Huang ST, Ferlanti ES, Saeed AI, Fleischmann RD, et al.: The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinforma 2008, 9:11. BioMed Central Full Text
  • [17]Li M, Gray W, Zhang H, Chung CH, Billheimer D, Yarbrough WG, Liebler DC, Shyr Y, Slebos RJC: Comparative Shotgun Proteomics Using Spectral Count Data and Quasi-Likelihood Modeling. J Proteome Res 2010, 9:4295-4305.
  • [18]Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, et al.: A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed. Mol Cellular Proteomics 2009, 8:2759-2769.
  • [19]Beck M, Claassen M, Aebersold R: Comprehensive proteomics. Curr Opin Biotechnol 2011, 22:3-8.
  • [20]De Groot PW, De Boer AD, Cunningham J, Dekker HL, De Jong L, Hellingwerf KJ, De Koster C, Klis FM: Proteomic analysis of Candida albicanscell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 2004, 3:955-965.
  • [21]Wartenberg D, Lapp K, Jacobsen ID, Dahse H-M, Kniemeyer O, Heinekamp T, Brakhage AA: Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol 2011, 301:602-611.
  • [22]Osherov N: Conidial germination in Aspergillus fumigatus. In Aspergillus fumigatus and Aspergillosis. ASM press, Edited by Latge J-P and Steinbach WJ. Washington DC, U.S.A.; 2009:131-142.
  • [23]Osherov N, Mathew J, Romans A, May GS: Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridization. Fungal Genet Biol 2002, 37:197-204.
  • [24]Sugui JA, Kim HS, Zarember KA, Chang YC, Gallin JI, Nierman WC, Kwon-Chung KJ: Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils. PLoS One 2008, 3:15.
  • [25]Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D: Regulation of Conidiation by Light in Aspergillus nidulans. Genetics 2011, 188:809-U897.
  • [26]Loros JJ, Denome SA, Dunlap JC: Molecular cloning of genes under control of the circadian clock in Neurospora. Science 1989, 243:385-388.
  • [27]Kimpel E, Osiewacz HD: PaGrg1, a glucose-repressible gene of Podospora anserina that is differentially expressed during lifespan. Curr Genet 1999, 35:557-563.
  • [28]Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM: A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 2010, 47:352-363.
  • [29]Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, Brakhage AA: Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infec Immun 1997, 65:5110-5117.
  • [30]Chai LYA, Vonk AG, Kullberg BJ, Verweij PE, Verschueren I, van der Meer JWM, Joosten LAB, Latge JP, Netea MG: Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect 2010, 13:151-159.
  • [31]Chai LYA, Netea MG, Sugui J, Vonk AG, van de Sande WWJ, Warris A, Kwon-Chung KJ: Jan Kullberg B: Aspergillus fumigatus Conidial Melanin Modulates Host Cytokine Response. Immunobiol 2010, 215:915-920.
  • [32]Thywißen A, Heinekamp T, Dahse H-M, Schmaler-Ripcke J, Nietsche S, Zipfel PF, Brakhage AA: Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol 2011., 2
  • [33]Soriani FM, Malavazi I, Savoldi M, Espeso E, Dinamarco TM, Bernardes LAS, Ferreira MES, Goldman MHS, Goldman GH: Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue. CrzA. BMC Microbiol 2010, 10:18. BioMed Central Full Text
  • [34]Cramer RA, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ: Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryotic Cell 2008, 7:1085-1097.
  • [35]Dutton JR, Johns S, Miller BL: StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 1997, 16:5710-5721.
  • [36]Reimann B, Bradsher J, Franke J, Hartmann E, Wiedmann M, Prehn S, Wiedmann B: Initial characterization of the nascent polypeptide-associated complex in Yeast. Yeast 1999, 15:397-407.
  • [37]Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, Samuelson J: The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. PNAS USA 2007, 104:11676-11681.
  • [38]Hammond C, Braakman I, Helenius A: Role of N-linked ologosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality-control. PNAS USA 1994, 91:913-917.
  • [39]Jin C: Protein Glycosylation in Aspergillus fumigatus Is Essential for Cell Wall Synthesis and Serves as a Promising Model of Multicellular Eukaryotic Development. Int J Microbiol 2012, 2012:654251.
  • [40]Zhang L, Feng DQ, Fang WX, Ouyang H, Luo YM, Du T, Jin C: Comparative proteomic analysis of an Aspergillus fumigatus mutant deficient in glucosidase I (AfCwh41). Microbiology 2009, 155:2157-2167.
  • [41]Steidl S, Papagiannopoulos P, Litzka O, Andrianopoulos A, Davis MA, Brakhage AA, Hynes MJ: AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC, and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol Cell Biology 1999, 19:99-106.
  • [42]Purnapatre K, Honigberg SM: Meiotic differentiation during colony maturation in Saccharomyces cerevisiae. Curr Genet 2002, 42:1-8.
  • [43]Thön M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA: The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 2010, 38:1098-1113.
  • [44]Govin J, Dorsey J, Gaucher J, Rousseaux S, Khochbin S, Berger SL: Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev 2010, 24:1772-1786.
  • [45]Lambou K, Lamarre C, Beau R, Dufour N, Latge J-P: Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol Microbiol 2010, 75:910-923.
  • [46]Vödisch M, Albrecht D, Leßing F, Schmidt AD, Winkler R, Guthke R, Brakhage AA, Kniemeyer O: Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics 2009, 9:1407-1415.
  • [47]Sugui JA, Pardo J, Chang YC, Muellbacher A, Zarember KA, Galvez EM, Brinster L, Zerfas P, Gallin JI, Simon MM, Kwon-Chung KJ: Role of laeA in the Regulation of alb1, gliP, conidial morphology, and virulence in Aspergillus fumigatus. Eukaryotic Cell 2007, 6:1552-1561.
  • [48]Maiya S, Grundmann A, Li X, Li SM, Turner G: Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. ChemBioChem 2007, 8:1736-1743.
  • [49]Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun H-P, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O: Analysis of the Aspergillus fumigatus Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia. J Proteome Res 2011, 10:2508-2524.
  • [50]Asif AR, Oellerich M, Amstrong VW, Gross U, Reichard U: Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis. Electrophoresis 2010, 31:1947-1958.
  • [51]Aguilar-Osorio G, van Kuyk PA, Seiboth B, Blom D, Solomon PS, Vinck A, Kindt F, Wosten HAB, de Vries RP: Spatial and Developmental Differentiation of Mannitol Dehydrogenase and Mannitol-1-Phosphate Dehydrogenase in Aspergillus niger. Eukaryotic Cell 2010, 9:1398-1402.
  • [52]Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PJI, de Vries RP: vanKuyk PA, Visser J: Mannitol is required for stress tolerance in Aspergillus nigerconidiospores. Eukaryotic Cell 2003, 2:690-698.
  • [53]Romano J, Nimrod G, Ben-Tal N, Shadkchan Y, Baruch K, Sharon H, Osherov N: Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology 2006, 152:1919-1928.
  • [54]Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C, Mouyna I, Prevost MC, Calderone R, Latge JP: Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl Environ Microbiol 2006, 72:3259-3267.
  • [55]Gastebois A, Mouyna I, Simenel C, Clavaud C, Coddeville B, Delepierre M, Latge JP, Fontaine T: Characterization of a New beta(1–3)-Glucan Branching Activity of Aspergillus fumigatus. J Biol Chem 2010, 285:2386-2396.
  • [56]Kumar A, Ahmed R, Singh PK, Shukla PK: Identification of virulence factors and diagnostic markers using immunosecretome of Aspergillus fumigatus. J Proteomics 2011, 74:1104-1112.
  • [57]De Bekker C, Bruning O, Jonker M, Breit T, Wosten H: Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 2011, 12:R71. BioMed Central Full Text
  • [58]Toogun OA, Zeiger W, Freeman BC: The p23 molecular chaperone promotes functional telomerase complexes through DNA dissociation. PNAS USA 2007, 104:5765-5770.
  • [59]Bauer B, Schwienbacher M, Broniszewska M, Israel L, Heesemann J, Ebel F: Characterisation of the CipC-like protein AFUA_5G09330 of the opportunistic human pathogenic mould Aspergillus fumigatus. Mycoses 2010, 53:296-304.
  • [60]Melin P, Schnurer J, Wagner EGH: Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 2002, 267:695-702.
  • [61]Schobel F, Jacobsen ID, Brock M: Evaluation of Lysine Biosynthesis as an Antifungal Drug Target: Biochemical Characterization of Aspergillus fumigatus Homocitrate Synthase and Virulence Studies. Eukaryotic Cell 2010, 9:878-893.
  • [62]Albrecht D, Guthke R, Brakhage AA, Kniemeyer O: Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics 2010, 11:17. BioMed Central Full Text
  • [63]Van den Brulle J, Steidl S, Brakhage AA: Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis. Appl Environ Microbiol 1999, 65:5222-5228.
  • [64]Hayman ML, Read LK: Trypanosoma brucei RBP16 is a mitochondrial Y-box family protein with guide RNA binding activity. J Biol Chem 1999, 274:12067-12074.
  • [65]Oh YT, Ahn C-S, Kim JG, Ro H-S, Lee C-W, Kim JW: Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 2010, 47:246-253.
  • [66]Vangelatos I, Roumelioti K, Gournas C, Suarez T, Scazzocchio C, Sophianopoulou V: Eisosome Organization in the Filamentous Ascomycete Aspergillus nidulans. Eukaryotic Cell 2010, 9:1441-1454.
  • [67]Zhang XP, Lester RL, Dickson RC: Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 2004, 279:22030-22038.
  • [68]Machado CR, Praekelt UM, de Oliveira RC, Barbosa ACC, Byrne KL, Meacock PA, Menck CFM: Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J Mol Biol 1997, 273:114-121.
  • [69]Kapteyn JC, Montijn RC, Dijkgraaf GJ, Van den EH, Klis FM: Covalent association of beta-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 1995, 177:3788-3792.
  • [70]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [71]Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample preparation method for proteome analysis. Nature Methods 2009, 6:359-360.
  • [72]Pieper R, Zhang Q, Clark DJ, Huang S-T, Suh M-J, Braisted JC, Payne SH, Fleischmann RD, Peterson SN, Tzipori S: Characterizing theEscherichia coliO157:H7 Proteome Including Protein Associations with Higher Order Assemblies. PLoS One 2011, 6:e26554.
  • [73]Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003, 75:4646-4658.
  • [74]Vizcaino JA, Cote R, Reisinger F, Foster JM, Mueller M, Rameseder J, Hermjakob H, Martens L: A guide to the Proteomics Identifications Database proteomics data repository. Proteomics 2009, 9:4276-4283.
  • [75]Arnaud MB, Chibucos MC, Costanzo MC, Crabtree J, Inglis DO, Lotia A, Orvis J, Shah P, Skrzypek MS, Binkley G, et al.: The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res 2010, 38:D420-D427.
  文献评价指标  
  下载次数:18次 浏览次数:34次