期刊论文详细信息
BMC Genomics
RNA-Seq profile of flavescence dorée phytoplasma in grapevine
Cristina Marzachì1  Flavio Veratti1  Sabrina Palmano1  Xavier Foissac2  Massimo Delledonne4  Sébastien Carrère3  Patricia Carle2  Luciana Galetto1  Simona Abbà1 
[1] Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy;Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France;CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France;Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, I-37134 Verona, Italy
关键词: qRT-PCR;    Hypothetical proteins;    Group II intron;    Vitis vinifera;    RNA-Seq;    Flavescence dorée phytoplasma;   
Others  :  1127436
DOI  :  10.1186/1471-2164-15-1088
 received in 2014-09-02, accepted in 2014-12-04,  发布年份 2014
PDF
【 摘 要 】

Background

The phytoplasma-borne disease flavescence dorée is still a threat to European viticulture, despite mandatory control measures and prophylaxis against the leafhopper vector. Given the economic importance of grapevine, it is essential to find alternative strategies to contain the spread, in order to possibly reduce the current use of harmful insecticides. Further studies of the pathogen, the vector and the mechanisms of phytoplasma-host interactions could improve our understanding of the disease. In this work, RNA-Seq technology followed by three de novo assembly strategies was used to provide the first comprehensive transcriptomics landscape of flavescence dorée phytoplasma (FD) infecting field-grown Vitis vinifera leaves.

Results

With an average of 8300 FD-mapped reads per library, we assembled 347 sequences, corresponding to 215 annotated genes, and identified 10 previously unannotated genes, 15 polycistronic transcripts and three genes supposedly localized in the gaps of the FD92 draft genome. Furthermore, we improved the annotation of 44 genes with the addition of 5′/3′ untranslated regions. Functional classification revealed that the most expressed genes were either related to translation and protein biosynthesis or hypothetical proteins with unknown function. Some of these hypothetical proteins were predicted to be secreted, so they could be bacterial effectors with a potential role in modulating the interaction with the host plant. Interestingly, qRT-PCR validation of the RNA-Seq expression values confirmed that a group II intron represented the FD genomic region with the highest expression during grapevine infection. This mobile element may contribute to the genomic plasticity that is necessary for the phytoplasma to increase its fitness and endorse host-adaptive strategies.

Conclusions

The RNA-Seq technology was successfully applied for the first time to analyse the FD global transcriptome profile during grapevine infection. Our results provided new insights into the transcriptional organization and gene structure of FD. This may represent the starting point for the application of high-throughput sequencing technologies to study differential expression in FD and in other phytoplasmas with an unprecedented resolution.

【 授权许可】

   
2014 Abbà et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220160857194.pdf 567KB PDF download
Figure 3. 29KB Image download
Figure 2. 47KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]EFSA Panel on Plant Health: Scientific opinion on pest categorisation of Grapevine Flavescence dorée. EFSA J 2014, 12:3851.
  • [2]Weintraub PG, Beanland L: Insect vectors of phytoplasmas. Annu Rev Entomol 2005, 51:91-111.
  • [3]Margaria P, Rosa C, Marzachì C, Turina M, Palmano S: Detection of flavescence dorée phytoplasma in grapevine by reverse-transcription PCR. Plant Dis 2007, 91:1496-1501.
  • [4]Martini M, Murari M, Mori N, Bertaccini A: Identification and epidemic distribution of two flavescence dorée—related phytoplasmas in Veneto (Italy). Plant Dis 1999, 83:925-930.
  • [5]Davis RE, Dally EL: Revised subgroup classification of group 16SrV phytoplasmas and placement of flavescence dorée associated phytoplasmas in two distinct subgroups. Plant Dis 2001, 85:790-797.
  • [6]Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X: Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence dorée phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol 2007, 73:4001-4010.
  • [7]Martini M, Botti S, Marcone C, Marzachì C, Casati P, Bianco PA, Benedetti R, Bertaccini A: Genetic variability among flavescence dorée phytoplasmas from different origins in Italy and France. Mol Cell Probes 2002, 16:197-208.
  • [8]Belli G, Bianco PA, Conti M: Grapevine yellows in Italy: past, present and future. J Plant Pathol 2010, 92:303-326.
  • [9]Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N: Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci 2009, 176:792-804.
  • [10]Hren M, Nikolic P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K: ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 2009, 10:460. BioMed Central Full Text
  • [11]Ehya F, Monavarfeshani A, Mohseni Fard E, Karimi Farsad L, Khayam Nekouei M, Mardi M, Salekdeh GH: Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. PLoS One 2013, 8:e66372.
  • [12]Mou H-Q, Lu J, Zhu S-F, Lin C-L, Tian G-Z, Xu X, Zhao W-J: Transcriptomic analysis of Paulownia infected by Paulownia witches’-broom Phytoplasma. PLoS One 2013, 10:e77217.
  • [13]Liu LY, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK, Chang TH, Lin SS: High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut Witches’-broom phytoplasma infection. Plant Cell Physiol 2014, 55:942-957.
  • [14]Luge T, Kube M, Freiwald A, Meierhofer D, Seemüller E, Sauer S: Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by ‘Candidatus Phytoplasma mali’ strain AT. Proteomics 2014, 14:1882-1889.
  • [15]Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, Mardi M, Salekdeh GH: Shotgun proteomic analysis of the Mexican lime tree infected with ‘CandidatusPhytoplasma aurantifolia’. J Proteome Res 2012, 12:785-795.
  • [16]Gai YP, Li YQ, Guo FY, Yuan CZ, Mo YY, Zhang HL, Wang H, Ji XL: Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 2014, 4:5378.
  • [17]Ji X, Gai Y, Lu B, Zheng C, Mu Z: Shotgun proteomic analysis of mulberry dwarf phytoplasma. Proteome Sci 2010, 8:20. BioMed Central Full Text
  • [18]Siewert C, Luge T, Duduk B, Seemüller E, Büttner C, Sauer S, Kube M: Analysis of expressed genes of the bacterium ‘Candidatus phytoplasma Mali’ highlights key features of virulence and metabolism. PLoS One 2014, 9:e94391.
  • [19]Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S: Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS One 2011, 6:e23242.
  • [20]Carle P, Malembic-Maher S, Arricau-Bouvery N, Desqué D, Eveillard S, Carrère S, Foissac X: Flavescence dorée phytoplasma genome: a metabolism oriented towards glycolysis and protein degradation. Bull Insectol (Supplement) 2011, 64:S13-S14.
  • [21]Malembic-Maher S, Constable F, Cimerman A, Arnaud G, Carle P, Foissac X, Boudon-Padieu E: A chromosome map of the Flavescence dorée phytoplasma. Microbiology 2008, 154:1454-1463.
  • [22]Kakizawa S, Oshima K, Jung HY, Suzuki S, Nishigawa H, Arashida R, Miyata S, Ugaki M, Kishino H, Namba S: Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J Bacteriol 2006, 188:3424-3428.
  • [23]Boonrod K, Munteanu B, Jarausch B, Jarausch W, Krczal G: An immunodominant membrane protein (Imp) of ‘Candidatus phytoplasma mali’ binds to plant actin. MPMI 2012, 25:889-895.
  • [24]Cimerman A, Pacifico D, Salar P, Marzachì C, Foissac X: Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Appl Environ Microbiol 2009, 75:2951-2957.
  • [25]Murolo S, Marcone C, Prota V, Garau R, Foissac X, Romanazzi G: Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. J Appl Microbiol 2010, 109:2049-2059.
  • [26]Schulthess B, Bloes DA, Francois P, Girard M, Schrenzel J, Bischoff M, Berger-Bachi B: sigmaB-dependent yabJ-spoVG operon involved in the regulation of extracellular nuclease, lipase and protease expression in Staphylococcus aureus. J Bacteriol 2011, 193:4954-4962.
  • [27]Mastronunzio JE, Kurscheid S, Fikrig E: Post-genomic analyses reveal development of infectious Anaplasma phagocytophilum during transmission from ticks to mice. J Bacteriol 2012, 194:2238-2247.
  • [28]Vannucci F, Foster D, Gebhart C: Laser microdissection coupled with RNA-seq analysis of porcine enterocytes infected with an obligate intracellular pathogen (Lawsonia intracellularis). BMC Genomics 2013, 14:421. BioMed Central Full Text
  • [29]Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL: Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 2012, 22:2467-2477.
  • [30]Roggia C, Caciagli P, Galetto L, Pacifico D, Veratti F, Bosco D, Marzachì C: Flavescence dorée phytoplasma titer in field-infected Barbera and Nebbiolo grapevines. Plant Pathol 2014, 63:31-41.
  • [31]Moran NA: Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 1996, 93:2873-2878.
  • [32]Bai X, Correa VR, Toruño TY, Ammar ED, Kamoun S, Hogenhout SA: AY-WB phytoplasma secretes a protein that targets plant cell nuclei. MPMI 2008, 22:18-30.
  • [33]Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA: Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A 2011, 108:E1254-E1263.
  • [34]MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA: Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 2011, 157:831-841.
  • [35]Seemüller E, Sule S, Kube M, Jelkmann W, Schneider B: The AAA+ ATPases and HflB/FtsH proteases of ‘Candidatus phytoplasma mali’: phylogenetic diversity, membrane topology, and relationship to strain virulence. MPMI 2013, 26:367-376.
  • [36]Miura C, Sugawara K, Neriya Y, Minato N, Keima T, Himeno M, Maejima K, Komatsu K, Yamaji Y, Oshima K, Namba S: Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma. Gene 2012, 510:107-112.
  • [37]Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA: Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 2006, 188:3682-3696.
  • [38]Evans D, Marquez SM, Pace NR: RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 2006, 31:333-341.
  • [39]Tourasse NJ, Stabell FB, Reiter L, Kolstø AB: Unusual group II introns in bacteria of the bacillus cereus group. J Bacteriol 2005, 187:5437-5451.
  • [40]Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S: Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 2004, 36:27-29.
  • [41]Simon DM, Clarke NAC, McNeil BA, Johnson I, Pantuso D, Dai L, Chai D, Zimmerly S: Group II introns in Eubacteria and Archaea: ORF-less introns and new varieties. RNA 2008, 14:1704-1713.
  • [42]Bonen L: Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J 1993, 7:40-46.
  • [43]Cousineau B, Lawrence S, Smith D, Belfort M: Retrotransposition of a bacterial group II intron. Nature 2000, 404:1018-1021.
  • [44]Del Campo M, Tijerina P, Bhaskaran H, Mohr S, Yang Q, Jankowsky E, Russell R, Lambowitz AM: Do DEAD-Box proteins promote group II intron splicing without unwinding RNA? Mol Cell 2007, 28:159-166.
  • [45]Toft C, Andersson SGE: Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 2010, 11:465-475.
  • [46]Leclercq S, Giraud I, Cordaux R: Remarkable abundance and evolution of mobile group II introns in wolbachia bacterial endosymbionts. Mol Biol Evol 2011, 28:685-697.
  • [47]Margaria P, Turina M, Palmano S: Detection of Flavescence dorée and Bois noir phytoplasmas, Grapevine leafroll associated virus-1 and -3 and Grapevine virus A from the same crude extract by reverse transcription-RealTime Taqman assays. Plant Pathol 2009, 58:838-845.
  • [48]Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 1993, 11:113-116.
  • [49]Schneider B, Seemüller E, Smart CD, Kirkpatrick BC: Phylogenetic Classification of Plant Pathogenic Mycoplasma-Like Organisms or Phytoplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology. Edited by Razin S, Tully JG. San Diego, CA: Academic Press; 1995:369-380.
  • [50]Lee IM, Gundersen DE, Hammond RW, Davis RE: Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 1994, 84:559-566.
  • [51]Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30:2114-2120.
  • [52]Carle P, Malembic-Maher S, Arricau-Bouvery N, Desqué D, Eveillard S, Carrère S, Foissac X: ‘Flavescence dorée’ phytoplasma genome: a metabolism oriented towards glycolysis and protein degradation. Bull Insectol 2011, 64:S13-S14.
  • [53]Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [54]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
  • [55]Grimplet J, Van Hemert J, Carbonell-Bejerano P, Dìaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martinez-Zapater J: Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 2012, 5:213. BioMed Central Full Text
  • [56]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 2011, 29:644-652.
  • [57]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [58]Huang X, Madan A: CAP3: a DNA sequence assembly program. Genome Res 1999, 9:868-877.
  • [59]Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
  • [60]Krogh A, Larsson BR, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [61]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucl Acids Res 2007, 35:W182-W185.
  • [62]Conesa A, Götz S: Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008, 2008:1-13.
  • [63]Gambino G, Gribaudo I: Simultaneous detection of nine grapevine viruses by multiplex reverse transcription-polymerase chain reaction with coamplification of a plant RNA as internal control. Phytopathology 2006, 96:1223-1229.
  • [64]Galetto L, Rashidi M, Yamchi A, Veratti F, Marzachì C: In Vitro Expression of Phytoplasma Immunodominant Membrane Proteins. In Phytoplasmas and Phytoplasma Diseases Management: how to Reduce Their Economic Impact. Edited by Bertaccini A. Bologna, Italy: IPWG - International Phytoplasmologist Working Group; 2014:272-279.
  • [65]Osborn AM, Smith CJ: Molecular Microbial Ecology. New York, NY: Taylor & Francis; 2005.
  • [66]Gutha L, Casassa L, Harbertson J, Naidu R: Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol 2010, 10:187. BioMed Central Full Text
  文献评价指标  
  下载次数:33次 浏览次数:5次