期刊论文详细信息
Virology Journal
Antiviral potency and functional analysis of tetherin orthologues encoded by horse and donkey
Xiaojun Wang2  Ping Wei1  Xingliang Wu2  Qinyong Gu2  Miaomiao Guo2  Xin Yin2 
[1] College of Veterinary Medicine, Northeast Agricultural University, Harbin, China;State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, Harbin, China
关键词: NF-κB;    EIAV;    Antiviral activity;    Equine tetherin;   
Others  :  1148630
DOI  :  10.1186/1743-422X-11-151
 received in 2014-06-03, accepted in 2014-08-22,  发布年份 2014
PDF
【 摘 要 】

Background

Tetherin is an interferon-inducible host cell factor that blocks the viral particle release of the enveloped viruses. Most knowledge regarding the interaction between tetherin and viruses has been obtained using the primate lentiviral system. However, much less is known about the functional roles of tetherin on other lentiviruses. Equine infectious anemia virus (EIAV) is an important macrophage-tropic lentivirus that has been widely used as a practical model for investigating the evolution of the host-virus relationship. The host range of EIAV is reported to include all members of the Equidae family. However, EIAV has different clinical responses in horse and donkey. It’s intriguing to investigate the similarities and differences between the tetherin orthologues encoded by horse and donkey.

Results

We report here that there are two equine tetherin orthologues. Compared to horse tetherin, there are three valine amino acid deletions within the transmembrane domain and three distinct mutations within the ectodomain of donkey tetherin. However, the antiviral activity of donkey tetherin was not affected by amino acid deletion or substitution. In addition, both tetherin orthologues encoded by horse and donkey are similarly sensitive to EIAV Env protein, and equally activate NF-κB signaling.

Conclusion

Our data suggest that both tetherin orthologues encoded by horse and donkey showed similar antiviral activities and abilities to induce NF-κB signaling. In addition, the phenomenon about the differential responses of horses and donkeys to infection with EIAV was not related with the differences in the structure of the corresponding tetherin orthologues.

【 授权许可】

   
2014 Yin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404175644579.pdf 4088KB PDF download
Figure 5. 53KB Image download
Figure 4. 65KB Image download
Figure 3. 51KB Image download
Figure 2. 51KB Image download
Figure 1. 93KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Neil SJ: The antiviral activities of tetherin. Curr Top Microbiol Immunol 2013, 371:67-104.
  • [2]Pan XB, Qu XW, Jiang D, Zhao XL, Han JC, Wei L: BST2/Tetherin inhibits hepatitis C virus production in human hepatoma cells. Antiviral Res 2013, 98:54-60.
  • [3]Weissenhorn W, Miguet N, Aschman N, Renesto P, Usami Y, Gottlinger HG: Structural basis of tetherin function. Curr HIV Res 2012, 10:298-306.
  • [4]Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, Guatelli J: Stimulation of NF-kappaB activity by the HIV restriction factor BST2. J Virol 2013, 87:2046-2057.
  • [5]Galao RP, Le Tortorec A, Pickering S, Kueck T, Neil SJ: Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 2012, 12:633-644.
  • [6]Mangeat B, Cavagliotti L, Lehmann M, Gers-Huber G, Kaur I, Thomas Y, Kaiser L, Piguet V: Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J Biol Chem 2012, 287:22015-22029.
  • [7]Yin X, Hu Z, Gu Q, Wu X, Zheng YH, Wei P, Wang X: Equine tetherin blocks retrovirus release and its activity is antagonized by equine infectious anemia virus envelope protein. J Virol 2014, 88:1259-1270.
  • [8]Morrison JH, Guevara RB, Marcano AC, Saenz DT, Fadel HJ, Rogstad DK, Poeschla EM: Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation. J Virol 2014, 88:3255-3272.
  • [9]Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM: BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 2013, 438:37-49.
  • [10]Blondeau C, Pelchen-Matthews A, Mlcochova P, Marsh M, Milne RS, Towers GJ: Tetherin restricts herpes simplex virus 1 and is antagonized by glycoprotein M. J Virol 2013, 87:13124-13133.
  • [11]Celestino M, Calistri A, Del Vecchio C, Salata C, Chiuppesi F, Pistello M, Borsetti A, Palu G, Parolin C: Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein. J Virol 2012, 86:6688-6700.
  • [12]Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D, Johnson MC, Munch J, Kirchhoff F, Bieniasz PD, Hatziioannou T: Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 2009, 6:54-67.
  • [13]Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P: Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci USA 2009, 106:2886-2891.
  • [14]Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, Johnson WE, Westmoreland S, Evans DT: Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog 2009, 5:e1000429.
  • [15]Gupta RK, Mlcochova P, Pelchen-Matthews A, Petit SJ, Mattiuzzo G, Pillay D, Takeuchi Y, Marsh M, Towers GJ: Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc Natl Acad Sci USA 2009, 106:20889-20894.
  • [16]Neil SJ, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451:425-430.
  • [17]Zenner HL, Mauricio R, Banting G, Crump CM: Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity. J Virol 2013, 87:13115-13123.
  • [18]Cook RF, Leroux C, Issel CJ: Equine infectious anemia and equine infectious anemia virus in 2013: a review. Vet Microbiol 2013, 167:181-204.
  • [19]Dong JB, Zhu W, Cook FR, Goto Y, Horii Y, Haga T: Identification of a novel equine infectious anemia virus field strain isolated from feral horses in southern Japan. J Gen Virol 2013, 94:360-365.
  • [20]Cook SJ, Cook RF, Montelaro RC, Issel CJ: Differential responses of Equus caballus and Equus asinus to infection with two pathogenic strains of equine infectious anemia virus. Vet Microbiol 2001, 79:93-109.
  • [21]Dietrich I, McMonagle EL, Petit SJ, Vijayakrishnan S, Logan N, Chan CN, Towers GJ, Hosie MJ, Willett BJ: Feline tetherin efficiently restricts release of feline immunodeficiency virus but not spreading of infection. J Virol 2011, 85:5840-5852.
  • [22]Takeda E, Nakagawa S, Nakaya Y, Tanaka A, Miyazawa T, Yasuda J: Identification and functional analysis of three isoforms of bovine BST-2. PLoS One 2012, 7:e41483.
  • [23]Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC: Crystal structure of a lipid G protein-coupled receptor. Science 2012, 335:851-855.
  • [24]Lippold S, Knapp M, Kuznetsova T, Leonard JA, Benecke N, Ludwig A, Rasmussen M, Cooper A, Weinstock J, Willerslev E, Shapiro B, Hofreiter M: Discovery of lost diversity of paternal horse lineages using ancient DNA. Nat Commun 2011, 2:450.
  • [25]Andrew AJ, Miyagi E, Kao S, Strebel K: The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 2009, 6:80. BioMed Central Full Text
  • [26]Fukuma A, Abe M, Morikawa Y, Miyazawa T, Yasuda J: Cloning and characterization of the antiviral activity of feline Tetherin/BST-2. PLoS One 2011, 6:e18247.
  • [27]Coleman CM, Spearman P, Wu L: Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology 2011, 8:26. BioMed Central Full Text
  • [28]Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, Bieniasz PD: Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 2009, 139:499-511.
  • [29]Zhang J, Liang C: BST-2 diminishes HIV-1 infectivity. J Virol 2010, 84:12336-12343.
  • [30]Cocka LJ, Bates P: Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities. PLoS Pathog 2012, 8:e1002931.
  • [31]Weinelt J, Neil SJ: Differential sensitivities of tetherin isoforms to counteraction by primate lentiviruses. J Virol 2014, 88:5845-5858.
  文献评价指标  
  下载次数:45次 浏览次数:28次