期刊论文详细信息
Stem Cell Research & Therapy
Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis
Kulmira Nurgali2  Samy Sakkal2  Richard Boyd1  Sarah Miller2  Ainsley M. Robinson2  Rhian Stavely2 
[1] Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton 3800, Victoria, Australia;Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne 3021, Victoria, Australia
关键词: TGF-β;    Allogeneic;    Adipose tissue;    Bone marrow;    Guinea pig;    Neuroprotection;    Colitis;    Multipotent stromal cells;    Mesenchymal stem cells;    Enteric neuropathy;   
Others  :  1235183
DOI  :  10.1186/s13287-015-0254-3
 received in 2015-08-03, accepted in 2015-12-02,  发布年份 2015
PDF
【 摘 要 】

Background

The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. This study aims to isolate and characterise guinea pig MSCs and then test their therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation.

Methods

MSCs from guinea pig bone marrow and adipose tissue were isolated and characterised in vitro. In in vivo experiments, guinea pigs received either TNBS for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1 × 10 6cells via enema 3 h after the induction of colitis. Colon tissues were collected 24 and 72 h after TNBS administration to assess the level of inflammation and damage to the ENS. The secretion of transforming growth factor-β1 (TGF-β1) was analysed in MSC conditioned medium by flow cytometry.

Results

Cells isolated from both sources were adherent to plastic, multipotent and expressed some human MSC surface markers. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In an in vivo model of TNBS-induced colitis, guinea pig bone marrow MSCs were comparatively more efficacious than adipose tissue MSCs in attenuating weight loss, colonic tissue damage and leukocyte infiltration into the mucosa and myenteric plexus. MSCs from both sources were equally neuroprotective in the amelioration of enteric neuronal loss and changes to the neurochemical coding of neuronal subpopulations. MSCs from both sources secreted TGF-β1 which exerted neuroprotective effects in vitro.

Conclusions

This study is the first evaluating the functional capacity of guinea pig bone marrow and adipose tissue-derived MSCs and providing evidence of their neuroprotective value in an animal model of colitis. In vitro characteristics of MSCs cannot be extrapolated to their therapeutic efficacy. TGF-β1 released by both types of MSCs might have contributed to the attenuation of enteric neuropathy associated with colitis.

【 授权许可】

   
2015 Stavely et al.

【 预 览 】
附件列表
Files Size Format View
20160103094240164.pdf 2617KB PDF download
Fig. 10. 86KB Image download
Fig. 9. 117KB Image download
Fig. 8. 115KB Image download
Fig. 7. 102KB Image download
Fig. 6. 119KB Image download
Fig. 5. 86KB Image download
Fig. 4. 194KB Image download
Fig. 3. 53KB Image download
Fig. 2. 207KB Image download
Fig. 1. 73KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al.: Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142:46-54.
  • [2]Strober W, Fuss I, Mannon P: The fundamental basis of inflammatory bowel disease. J Clin Invest 2007, 117:514-21.
  • [3]Pithadia AB, Jain S: Treatment of inflammatory bowel disease (IBD). Pharmacol Rep 2011, 63:629-42.
  • [4]Vester-Andersen MK, Prosberg MV, Jess T, Andersson M, Bengtsson BG, Blixt T, et al.: Disease course and surgery rates in inflammatory bowel disease: a population-based, 7-year follow-up study in the era of immunomodulating therapy. Am J Gastroenterol 2014, 109:705-14.
  • [5]Isaacs K, Herfarth H: Role of probiotic therapy in IBD. Inflamm Bowel Dis 2008, 14:1597-605.
  • [6]Singh UP, Singh NP, Singh B, Mishra MK, Nagarkatti M, Nagarkatti PS, et al.: Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci (Schol Ed) 2010, 2:993-1008.
  • [7]Wang S, Qu X, Zhao RC: Clinical applications of mesenchymal stem cells. J Hematol Oncol 2012, 5:19.
  • [8]Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF: Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013, 34:747-54.
  • [9]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-7.
  • [10]Caplan AI: Mesenchymal stem cells. J Orthop Res 1991, 9:641-50.
  • [11]Mosna F, Sensebe L, Krampera M: Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 2010, 19:1449-70.
  • [12]Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al.: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002, 13:4279-95.
  • [13]Chamberlain G, Fox J, Ashton B, Middleton J: Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25:2739-49.
  • [14]Ankrum JA, Ong JF, Karp JM: Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014, 32:252-60.
  • [15]Li J, Ezzelarab MB, Cooper DK: Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation 2012, 19:273-85.
  • [16]Karp JM, Leng Teo GS: Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 2009, 4:206-16.
  • [17]Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y: Immunobiology of mesenchymal stem cells. Cell Death Differ 2013, 21:216-25.
  • [18]Chen L, Tredget EE, Wu PY, Wu Y: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008., 3Article ID e1886
  • [19]Sémont A, Demarquay C, Bessout R, Durand C, Benderitter M, Mathieu N: Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration. PLoS One 2013., 8Article ID e70170
  • [20]Wu Y, Chen L, Scott PG, Tredget EE: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007, 25:2648-59.
  • [21]Forbes GM, Sturm MJ, Leong RW, Sparrow MP, Segarajasingam D, Cummins AG, et al.: A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol 2014, 12:64-71.
  • [22]Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al.: Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 2010, 59:1662-9.
  • [23]Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, et al.: Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011, 60:788-98.
  • [24]Bouchez G, Sensebé L, Vourc’h P, Garreau L, Bodard S, Rico A, et al.: Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 2008, 52:1332-42.
  • [25]Han X, Gao W, Chen L, Yang H, Shi Q: Promotion of neurological recovery in rat spinal hemisection injury by collagen scaffold loaded with mesenchymal stem cells. Bone Joint J 2014, 96(suppl 11):246.
  • [26]Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, et al.: Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009, 110:1189-97.
  • [27]Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, et al.: Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 2011, 13:675-85.
  • [28]Karussis D, Kassis I, Kurkalli BGS, Slavin S: Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 2008, 265:131-5.
  • [29]Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, et al.: Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 2009, 110:1674-84.
  • [30]Lin Y-T, Chern Y, Shen C-KJ, Wen H-L, Chang Y-C, Li H, et al.: Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington’s disease mouse models. PLoS One 2011., 6Article ID e22924
  • [31]Matthes SM, Reimers K, Janssen I, Liebsch C, Kocsis JD, Vogt PM, et al.: Intravenous transplantation of mesenchymal stromal cells to enhance peripheral nerve regeneration. Biomed Res Int 2013, 2013:573169.
  • [32]Payne NL, Sun G, McDonald C, Layton D, Moussa L, Emerson-Webber A, et al.: Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 2013, 22:1409-25.
  • [33]Vercelli A, Mereuta O, Garbossa D, Muraca G, Mareschi K, Rustichelli D, et al.: Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008, 31:395-405.
  • [34]Díez-Tejedor E, Gutiérrez-Fernández M, Martínez-Sánchez P, Rodríguez-Frutos B, Ruiz-Ares G, Lara ML, et al.: Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 2014, 23:2694-700.
  • [35]Thomsen GM, Gowing G, Svendsen S, Svendsen CN: The past, present and future of stem cell clinical trials for ALS. Exp Neurol 2014, 262(Part B):127-37.
  • [36]De Giorgio R, Barbara G, Furness JB, Tonini M: Novel therapeutic targets for enteric nervous system disorders. Trends Pharmacol Sci 2007, 28:473-81.
  • [37]Lomax AE, Fernández E, Sharkey KA: Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil 2005, 17:4-15.
  • [38]Lakhan SE, Kirchgessner A: Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 2010, 7:37.
  • [39]Hansen MB: The enteric nervous system III: a target for pharmacological treatment. Pharmacol Toxicol 2003, 93:1-13.
  • [40]Furness JB: The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012, 9:286-94.
  • [41]Boyer L, Ghoreishi M, Templeman V, Vallance BA, Buchan AM, Jevon G, et al.: Myenteric plexus injury and apoptosis in experimental colitis. Auton Neurosci 2005, 117:41-53.
  • [42]Linden D, Couvrette J, Ciolino A, McQuoid C, Blaszyk H, Sharkey K, et al.: Indiscriminate loss of myenteric neurones in the TNBS‐inflamed guinea‐pig distal colon. Neurogastroenterol Motil 2005, 17:751-60.
  • [43]Nurgali K, Qu Z, Hunne B, Thacker M, Pontell L, Furness JB: Morphological and functional changes in guinea‐pig neurons projecting to the ileal mucosa at early stages after inflammatory damage. J Physiol 2011, 589:325-39.
  • [44]Sarnelli G, De Giorgio R, Gentile F, Calì G, Grandone I, Rocco A, et al.: Myenteric neuronal loss in rats with experimental colitis: role of tissue transglutaminase-induced apoptosis. Dig Liver Dis 2009, 41:185-93.
  • [45]Boyer L, Sidpra D, Jevon G, Buchan AM, Jacobson K: Differential responses of VIPergic and nitrergic neurons in paediatric patients with Crohn’s disease. Auton Neurosci 2007, 134:106-14.
  • [46]de Fontgalland D, Brookes SJ, Gibbins I, Sia TC, Wattchow DA: The neurochemical changes in the innervation of human colonic mesenteric and submucosal blood vessels in Ulcerative colitis and Crohn’s disease. Neurogastroenterol Motil 2014, 26:731-44.
  • [47]Neunlist M, Aubert P, Toquet C, Oreshkova T, Barouk J, Lehur P, et al.: Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 2003, 52:84-90.
  • [48]Schneider J, Jehle EC, Starlinger MJ, Neunlist M, Michel K, Hoppe S, et al.: Neurotransmitter coding of enteric neurones in the submucous plexus is changed in non-inflamed rectum of patients with Crohn’s disease. Neurogastroenterol Motil 2001, 13:255-64.
  • [49]Winston JH, Li Q, Sarna SK: Paradoxical regulation of ChAT and nNOS expression in animal models of Crohn’s colitis and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2013, 305:G295-302.
  • [50]Bressenot A, Chevaux JB, Williet N, Oussalah A, Germain A, Gauchotte G, et al.: Submucosal plexitis as a predictor of postoperative surgical recurrence in Crohn’s disease. Inflamm Bowel Dis 2013, 19:1654-61.
  • [51]Ferrante M, de Hertogh G, Hlavaty T, D’Haens G, Penninckx F, D’Hoore A, et al.: The value of myenteric plexitis to predict early postoperative Crohn’s disease recurrence. Gastroenterology 2006, 130:1595-606.
  • [52]Sokol H, Polin V, Lavergne-Slove A, Panis Y, Treton X, Dray X, et al.: Plexitis as a predictive factor of early postoperative clinical recurrence in Crohn’s disease. Gut 2009, 58:1218-25.
  • [53]Furness J: The Enteric Nervous System. Blackwell, Oxford; 2006.
  • [54]Nurgali K: Plasticity and ambiguity of the electrophysiological phenotypes of enteric neurons. Neurogastroenterol Motil 2009, 21:903-13.
  • [55]Galligan J: Ligand‐gated ion channels in the enteric nervous system. Neurogastroenterol Motil 2002, 14:611-23.
  • [56]Cross RW, Fenton KA, Geisbert JB, Mire CE, Geisbert TW: Modeling the disease course of Zaire ebolavirus infection in the outbred guinea pig. J Infect Dis 2015, 212(Suppl 2):S305-15.
  • [57]Padilla-Carlin DJ, McMurray DN, Hickey AJ: The guinea pig as a model of infectious diseases. Comp Med 2008, 58:324.
  • [58]Domínguez-Fandos D, Valdés C, Ferrer E, Puig-Pey R, Blanco I, Tura-Ceide O, et al.: Sildenafil in a cigarette smoke-induced model of COPD in the guinea pig. Eur Respir J 2015, 46:346-54.
  • [59]Pettingill LN, Wise AK, Geaney MS, Shepherd RK: Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One 2011., 6Article ID e18733
  • [60]Soo PS, Hiscock J, Botting KJ, Roberts CT, Davey AK, Morrison JL: Maternal undernutrition reduces P-glycoprotein in guinea pig placenta and developing brain in late gestation. Reprod Toxicol 2012, 33:374-81.
  • [61]Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al.: Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res 2014, 115:44-54.
  • [62]Nurgali K, Nguyen TV, Matsuyama H, Thacker M, Robbins HL, Furness JB: Phenotypic changes of morphologically identified guinea-pig myenteric neurons following intestinal inflammation. J Physiol 2007, 583:593-609.
  • [63]Nurgali K, Nguyen TV, Thacker M, Pontell L, Furness JB: Slow synaptic transmission in myenteric AH neurons from the inflamed guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2009, 297:G582-G93.
  • [64]Linden DR: Enhanced excitability of guinea pig ileum myenteric AH neurons during and following recovery from chemical colitis. Neurosci Lett 2013, 545:91-5.
  • [65]Lomax AE, O’Hara JR, Hyland NP, Mawe GM, Sharkey KA: Persistent alterations to enteric neural signaling in the guinea pig colon following the resolution of colitis. Am J Physiol Gastrointest Liver Physiol 2007, 292:G482-G91.
  • [66]Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, Watanabe S, et al.: Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 2012, 14:R31.
  • [67]Duan HG, Ji F, Zheng CQ, Wang CH, Li J: Human umbilical cord mesenchymal stem cells alleviate nasal mucosa radiation damage in a guinea pig model. J Cell Biochem 2015, 116:331-8.
  • [68]Robinson AM, Sakkal S, Park A, Jovanovska V, Payne N, Carbone SE, et al.: Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2014, 307:G1115-G29.
  • [69]Payne NL, Sun G, McDonald C, Moussa L, Emerson-Webber A, Loisel-Meyer S, et al.: Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain Behav Immun 2013, 30:103-14.
  • [70]Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC: Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A 1998, 95:10614-9.
  • [71]Pontell L, Castelucci P, Bagyánszki M, Jovic T, Thacker M, Nurgali K, et al.: Structural changes in the epithelium of the small intestine and immune cell infiltration of enteric ganglia following acute mucosal damage and local inflammation. Virchows Arch 2009, 455:55-65.
  • [72]Grundmann D, Klotz M, Rabe H, Glanemann M, Schäfer K-H. Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract. Sci Rep. 2015;9226.
  • [73]Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al.: Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15:641-8.
  • [74]Furness J: Types of neurons in the enteric nervous system. J Auton Nerv Syst 2000, 81:87-96.
  • [75]Lasco TM, Gonzalez-Juarrero M, Saalmüller A, Lunney JK: Cross-reaction of anti-human CD monoclonal antibodies on guinea pig cells: A summary of the guinea pig section of the HLDA8 animal homologues data. Vet Immunol Immunopathol 2007, 119:131-6.
  • [76]Li Q, Qi L-J, Guo Z-K, Li H, Zuo H-B, Li N-N: CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Histol 2013, 44:411-22.
  • [77]Frölich K, Scherzed A, Mlynski R, Technau A, Hagen R, Kleinsasser N, et al.: Multipotent stromal cells for autologous cell therapy approaches in the guinea pig model. J Otorhinolaryngol Relat Spec 2010, 73:9-16.
  • [78]Dmitrieva RI, Minullina IR, Bilibina AA, Tarasova OV, Anisimov SV, Zaritskey AY: Bone marrow-and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle 2012, 11:377-83.
  • [79]Zhu X, Shi W, Tai W, Liu F: The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived Mesenchymal stem cells. Cell Tissue Res 2012, 350:277-87.
  • [80]Schellenberg A, Stiehl T, Horn P, Joussen S, Pallua N, Ho AD, et al.: Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 2012, 14:401-11.
  • [81]Ayatollahi M, Salmani MK, Geramizadeh B, Tabei SZ, Soleimani M, Sanati MH: Conditions to improve expansion of human mesenchymal stem cells based on rat samples. World J Stem Cells 2012, 4:1-8.
  • [82]Le Blanc K: Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 2006, 8:559-61.
  • [83]Javazon EH, Beggs KJ, Flake AW: Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 2004, 32:414-25.
  • [84]Gothard D, Dawson J, Oreffo R: Assessing the potential of colony morphology for dissecting the CFU-F population from human bone marrow stromal cells. Cell Tissue Res 2013, 352:237-47.
  • [85]Taghi GM, Maryam GK, Taghi L, Leili H, Leyla M: Characterization of in vitro cultured bone marrow and adipose tissue‐derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biol Int 2012, 36:1239-49.
  • [86]Wirtz S, Neufert C, Weigmann B, Neurath MF: Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007, 2:541-6.
  • [87]Linden DR, Sharkey KA, Mawe GM: Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J Physiol 2003, 547:589-601.
  • [88]Haskó G, Linden J, Cronstein B, Pacher P: Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008, 7:759-70.
  • [89]Ivanova-Todorova E, Bochev I, Mourdjeva M, Dimitrov R, Bukarev D, Kyurkchiev S, et al.: Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 2009, 126:37-42.
  • [90]Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al.: Immunomodulatory effect of human adipose tissue‐derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005, 129:118-29.
  • [91]Antunes M, Branco V, Diaz B, Morales M, Xisto D, Rocco P, et al.: Mesenchymal stem cells derived from bone marrow present better effects on lung inflammation and remodeling compared with other sources in experimental asthma. Am J Respir Crit Care Med 2014, 189:A5291.
  • [92]Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, et al.: Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 2014, 15:118.
  • [93]Elman JS, Li M, Wang F, Gimble JM, Parekkadan B: A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm (Lond) 2014, 11:1.
  • [94]Belai A, Boulos PB, Robson T, Burnstock G: Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut 1997, 40:767-74.
  • [95]Di Girolamo G, Farina M, Riberio ML, Ogando D, Aisemberg J: de los Santos AR, et al. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum. Br J Pharmacol 2003, 139:1164-70.
  • [96]Wu J, Lin Q, Lu Y, Willis WD, Westlund KN: Changes in nitric oxide synthase isoforms in the spinal cord of rat following induction of chronic arthritis. Exp Brain Res 1998, 118:457-65.
  • [97]Suply E, de Vries P, Soret R, Cossais F, Neunlist M: Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am J Physiol Gastrointest Liver Physiol 2012, 302:G1373-80.
  • [98]Wattchow D, Brookes S, Murphy E, Carbone S, De Fontgalland D, Costa M: Regional variation in the neurochemical coding of the myenteric plexus of the human colon and changes in patients with slow transit constipation. Neurogastroenterol Motil 2008, 20:1298-305.
  • [99]Dobolyi A, Vincze C, Pal G, Lovas G: The neuroprotective functions of transforming growth factor Beta proteins. Int J Mol Sci 2012, 13:8219-58.
  • [100]da Silva ML, Fontes AM, Covas DT, Caplan AI: Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009, 20:419-27.
  • [101]Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, et al.: Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res 2012, 347:291-301.
  • [102]Liu FF, Liu CY, Li XP, Zheng SZ, Li QQ, Liu Q, et al.: Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion. Neural Regen Res 2015, 10:438.
  • [103]Brionne TC, Tesseur I, Masliah E, Wyss-Coray T: Loss of TGF-β1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 2003, 40:1133-45.
  • [104]Hagl C, Schäfer KH, Hellwig I, Barrenschee M, Harde J, Holtmann M, et al.: Expression and function of the transforming growth factor‐b system in the human and rat enteric nervous system. Neurogastroenterol Motil 2013, 25:601-e464.
  • [105]Neunlist M, Aubert P, Bonnaud S, Van Landeghem L, Coron E, Wedel T, et al.: Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 2007, 292:G231-41.
  • [106]De Giorgio R, Giancola F, Boschetti E, Abdo H, Lardeux B, Neunlist M: Enteric glia and neuroprotection: basic and clinical aspects. Am J Physiol Gastrointest Liver Physiol 2012, 303:G887-G93.
  • [107]Kim HY, Kim H, Oh KW, Oh SI, Koh SH, Baik W, et al.: Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 2014, 32:2724-31.
  • [108]Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, et al.: Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis 2013, 58:249-57.
  文献评价指标  
  下载次数:78次 浏览次数:16次