期刊论文详细信息
Virology Journal
PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection
Tetsuya Toyoda6  Bing Sun5  Ke Xu5  Vincent Deubel3  Philippe Buchy3  Michinori Kohara4  Fumihiko Yasui4  Satoshi Sekiguchi4  Yingying Mao1  Leiyun Weng1  Jinlan Wang1  Hongbing Jiang1  Shijian Zhang2  Qiang Wang1 
[1] Units of Viral Genome Regulation, the Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, 200025, Shanghai, P. R. China;Roche R&D Center China LTD, 720 Cai Lun Road, Building 5, Pudong, Shanghai, 201203, P. R. China;Institut Pasteur in Cambodia, 5 Monivong Blvd, P.O. Box 983, Phnom Penh, Cambodia;Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Biology, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8613, Japan;Units of Molecular Virology, the Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, 200025, Shanghai, P. R. China;Choju Medical Institute, Fukushimura Hospital, 19-14 Azanakayama, Noyori-cho, Toyohashi, Aichi, 441-8124, Japan
关键词: Interferon;    Apoptosis;    Replication;    Transcription;    PA;    Influenza virus;   
Others  :  1154593
DOI  :  10.1186/1743-422X-9-106
 received in 2011-10-14, accepted in 2012-05-21,  发布年份 2012
PDF
【 摘 要 】

Background

Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV) and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity.

Methods

The replicon activities of PR8 and WSN strains (H1N1) of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1) and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA) was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells.

Results

The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells.

Conclusions

Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

【 授权许可】

   
2012 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407105232204.pdf 1333KB PDF download
Figure 7. 84KB Image download
Figure 6. 53KB Image download
Figure 5. 26KB Image download
Figure 4. 49KB Image download
Figure 3. 31KB Image download
Figure 2. 29KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Webster RG, Sharp GB, Claas EC: Interspecies transmission of influenza viruses. Am J Respir Crit Care Med 1995, 152:S25-30.
  • [2]Kawaoka Y, Krauss S, Webster RG: Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 1989, 63:4603-4608.
  • [3]Lindstrom SE, Cox NJ, Klimov A: Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957–1972: evidence for genetic divergence and multiple reassortment events. Virology 2004, 328:101-119.
  • [4]Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM: Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009, 360:2605-2615.
  • [5]Wasilenko JL, Lee CW, Sarmento L, Spackman E, Kapczynski DR, Suarez DL, Pantin-Jackwood MJ: NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. J Virol 2008, 82:4544-4553.
  • [6]Hulse-Post DJ, Franks J, Boyd K, Salomon R, Hoffmann E, Yen HL, Webby RJ, Walker D, Nguyen TD, Webster RG: Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. J Virol 2007, 81:8515-8524.
  • [7]Seyer R, Hrincius ER, Ritzel D, Abt M, Mellmann A, Marjuki H, Kuhn J, Wolff T, Ludwig S, Ehrhardt C: Synergistic adaptive mutations in the hemagglutinin and polymerase acidic protein lead to increased virulence of pandemic 2009 H1N1 influenza A virus in mice. J Infect Dis 2012, 205:262-271.
  • [8]Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, Hulse-Post DJ, Humberd J, Trichet M, Rehg JE, Webby RJ, et al.: The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 2006, 203:689-697.
  • [9]Palese P, Shaw ML: Orthomyxoviridae: The Viruses and Their Replication. In Fields Virology. 5th edition. Edited by Knipe DM, Howley PM. Philadelphia: Lippincott Williams & Wilkins; 2007:1647-1689.
  • [10]Toyoda T, Adyshev DM, Kobayashi M, Iwata A, Ishihama A: Molecular assembly of the influenza virus RNA polymerase: determination of the subunit-subunit contact sites. J Gen Virol 1996, 77(Pt 9):2149-2157.
  • [11]Kobayashi M, Toyoda T, Ishihama A: Influenza virus PB1 protein is the minimal and essential subunit of RNA polymerase. Arch Virol 1996, 141:525-539.
  • [12]Biswas SK, Nayak DP: Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol 1994, 68:1819-1826.
  • [13]Ulmanen I, Broni BA, Krug RM: Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7G pppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci U S A 1981, 78:7355-7359.
  • [14]Li ML, Rao P, Krug RM: The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 2001, 20:2078-2086.
  • [15]Blaas D, Patzelt E, Kuechler E: Cap-recognizing protein of influenza virus. Virology 1982, 116:339-348.
  • [16]Crepin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok RW: Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol 2010, 84:9096-9104.
  • [17]Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW: The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009, 458:914-918.
  • [18]Fodor E, Brownlee G: Influenza virus replication. In Influenza. Edited by Potter C. Amsterdom: Elsevier; 2002:1-29.
  • [19]Hara K, Schmidt FI, Crow M, Brownlee GG: Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 2006, 80:7789-7798.
  • [20]Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, et al.: Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 2009, 458:909-913.
  • [21]Kawakami K, Mizumoto K, Ishihama A: RNA polymerase of influenza virus. IV. Catalytic properties of the capped RNA endonuclease associated with the RNA polymerase. Nucleic Acids Res 1983, 11:3637-3649.
  • [22]Plotch SJ, Bouloy M, Ulmanen I, Krug RM: A unique cap(m7G pppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 1981, 23:847-858.
  • [23]Krug RM, Alonso-Caplan FV, Julkunen I, Katze MG: Expression and replication of the influenza virus genome. Edited by Krug RM. New York: Plenum Press; 1989:89-152.
  • [24]Deng T, Vreede FT, Brownlee GG: Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol 2006, 80:2337-2348.
  • [25]Zhang S, Wang J, Wang Q, Toyoda T: Internal initiation of influenza virus replication of v- and cRNA in vitro. J Biol Chem 2010, 285:41194-41201.
  • [26]Neumann G, Shinya K, Kawaoka Y: Molecular pathogenesis of H5N1 influenza virus infections. Antivir Ther 2007, 12:617-626.
  • [27]Abdel-Ghafar AN, Chotpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, de Jong MD, Naghdaliyev A, Peiris JS, Shindo N, Soeroso S, Uyeki TM: Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 2008, 358:261-273.
  • [28]Uyeki TM: Global epidemiology of human infections with highly pathogenic avian influenza A (H5N1) viruses. Respirology 2008, 13(Suppl 1):S2-9.
  • [29]Maines TR, Chen LM, Matsuoka Y, Chen H, Rowe T, Ortin J, Falcon A, Nguyen TH, le Mai Q, Sedyaningsih ER, et al.: Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci U S A 2006, 103:12121-12126.
  • [30]Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y: Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol 2008, 82:11880-11888.
  • [31]Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO: Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathog 2008, 4:e1000072.
  • [32]Hatta M, Halfmann P, Wells K, Kawaoka Y: Human influenza a viral genes responsible for the restriction of its replication in duck intestine. Virology 2002, 295:250-255.
  • [33]Gutiérrez R, Naughtin M, Horm S, San S, Buchy P: A(H5N1) Virus Evolution in South East Asia. Viruses 2009, 1:335-361.
  • [34]Kashiwagi T, Leung BW, Deng T, Chen H, Brownlee GG: The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding. PLoS One 2009, 4:e5473.
  • [35]Fodor E, Crow M, Mingay LJ, Deng T, Sharps J, Fechter P, Brownlee GG: A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 2002, 76:8989-9001.
  • [36]Hara K, Shiota M, Kido H, Ohtsu Y, Kashiwagi T, Iwahashi J, Hamada N, Mizoue K, Tsumura N, Kato H, Toyoda T: Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site. Genes Cells 2001, 6:87-97.
  • [37]Sanz-Ezquerro JJ, Zurcher T, de la Luna S, Ortin J, Nieto A: The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J Virol 1996, 70:1905-1911.
  • [38]Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK: The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 2009, 83:12325-12335.
  • [39]Kashiwagi T, Hara K, Nakazono Y, Hamada N, Watanabe H: Artificial hybrids of influenza A virus RNA polymerase reveal PA subunit modulates its thermal sensitivity. PLoS One 2010, 5:e15140.
  • [40]Buchy P, Mardy S, Vong S, Toyoda T, Aubin JT, Miller M, Touch S, Sovann L, Dufourcq JB, Richner B, et al.: Influenza A/H5N1 virus infection in humans in Cambodia. J Clin Virol 2007, 39:164-168.
  • [41]Toyoda T, Hara K, Imamura Y: Ser624 of the PA subunit of influenza A virus is not essential for viral growth in cells and mice, but required for the maximal viral growth. Arch Virol 2003, 148:1687-1696.
  • [42]Jiang H, Zhang S, Wang Q, Wang J, Geng L, Toyoda T: Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology 2010, 408:190-196.
  • [43]Reed LJ, Muench H: Simple method of estimating 50 per cent endpoinds. Amer J Hyg 1938, 27:493-497.
  • [44]Wang C, Youle RJ: The role of mitochondria in apoptosis*. Annu Rev Genet 2009, 43:95-118.
  • [45]Li J, Yuan J: Caspases in apoptosis and beyond. Oncogene 2008, 27:6194-6206.
  • [46]Roulston A, Marcellus RC, Branton PE: Viruses and apoptosis. Annu Rev Microbiol 1999, 53:577-628.
  • [47]Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000, 10:369-377.
  • [48]Kroemer G: The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997, 3:614-620.
  • [49]Kroemer G: Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997, 4:443-456.
  • [50]Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J: The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 2005, 102:18590-18595.
  • [51]Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K: Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 2005, 79:12058-12064.
  • [52]Hatta M, Gao P, Halfmann P, Kawaoka Y: Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001, 293:1840-1842.
  • [53]Gabriel G, Herwig A, Klenk HD: Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 2008, 4:e11.
  • [54]Mehle A, Doudna JA: An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe 2008, 4:111-122.
  • [55]Mehle A, Doudna JA: Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci U S A 2009, 106:21312-21316.
  • [56]Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, et al.: Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 1999, 96:9345-9350.
  • [57]Sarmento L, Afonso CL, Estevez C, Wasilenko J, Pantin-Jackwood M: Differential host gene expression in cells infected with highly pathogenic H5N1 avian influenza viruses. Vet Immunol Immunopathol 2008, 125:291-302.
  • [58]Vester D, Rapp E, Gade D, Genzel Y, Reichl U: Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 2009, 9:3316-3327.
  • [59]Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, et al.: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441:101-105.
  • [60]Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M: Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 2008, 82:335-345.
  • [61]Yoneyama M, Fujita T: RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 2009, 227:54-65.
  • [62]Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousax C: RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010, 140:397-408.
  • [63]Haller O, Kochs G, Weber F: The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006, 344:119-130.
  • [64]Taniguchi T, Takaoka A: The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 2002, 14:111-116.
  • [65]Price GE, Gaszewska-Mastarlarz A, Moskophidis D: The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol 2000, 74:3996-4003.
  • [66]Mosca JD, Pitha PM: Transcriptional and posttranscriptional regulation of exogenous human beta interferon gene in simian cells defective in interferon synthesis. Mol Cell Biol 1986, 6:2279-2283.
  • [67]Kuchipudi SV, Dunham SP, Nelli R, White GA, Coward VJ, Slomka MJ, Brown IH, Chang KC: Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1. Immunol Cell Biol 2011.
  • [68]Brydon EW, Morris SJ, Sweet C: Role of apoptosis and cytokines in influenza virus morbidity. FEMS Microbiol Rev 2005, 29:837-850.
  • [69]Olsen CW, Kehren JC, Dybdahl-Sissoko NR, Hinshaw VS: bcl-2 alters influenza virus yield, spread, and hemagglutinin glycosylation. J Virol 1996, 70:663-666.
  • [70]Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, Ludwig S: Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 2003, 22:2717-2728.
  • [71]McLean JE, Datan E, Matassov D, Zakeri ZF: Lack of Bax prevents influenza A virus-induced apoptosis and causes diminished viral replication. J Virol 2009, 83:8233-8246.
  • [72]Machida K, Tsukiyama-Kohara K, Seike E, Tone S, Shibasaki F, Shimizu M, Takahashi H, Hayashi Y, Funata N, Taya C, et al.: Inhibition of cytochrome c release in Fas-mediated signaling pathway in transgenic mice induced to express hepatitis C viral proteins. J Biol Chem 2001, 276:12140-12146.
  • [73]Pe'ery T, Mathews M: Viral translational strategies and host defense mechanism. In Translational Control of Gene Expression. Edited by Sonenberg N, Hershey J, Mathews M. Cold Spting Harbor: Cold Spting Harbor Laboratory Press; 2000:371-424.
  • [74]McLean JE, Ruck A, Shirazian A, Pooyaei-Mehr F, Zakeri ZF: Viral manipulation of cell death. Curr Pharm Des 2008, 14:198-220.
  • [75]Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P: Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 2005, 1:e4.
  • [76]Zamarin D, Ortigoza MB, Palese P: Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol 2006, 80:7976-7983.
  • [77]Zhang S, Wang Q, Wang J, Mizumoto K, Toyoda T: Two mutations in the C-terminal domain of influenza virus RNA polymerase PB2 enhance transcription by enhancing cap-1 RNA binding activity. Biochim Biophys Acta 2012, 1819:78-83.
  • [78]Zhang S, Weng L, Geng L, Wang J, Zhou J, Deubel V, Buchy P, Toyoda T: Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem Biophys Res Commun 2010, 391:570-574.
  • [79]Goto H, Wells K, Takada A, Kawaoka Y: Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J Virol 2001, 75:9297-9301.
  • [80]Yoneyama M, Suhara W, Fukuhara Y, Sato M, Ozato K, Fujita T: Autocrine amplification of type I interferon gene expression mediated by interferon stimulated gene factor 3 (ISGF3). J Biochem 1996, 120:160-169.
  文献评价指标  
  下载次数:94次 浏览次数:17次