期刊论文详细信息
Nutrition & Metabolism
Protein energy malnutrition increases arginase activity in monocytes and macrophages
Pascale Kropf6  Ingrid Müller6  Markus Munder4  Manuel Modolell5  Philip Bergin2  Shanthi Herath1  Hafid Al-Hassi6  Steffen Schuster7  Christopher Mack6  Vanessa Yardley3  Karina Corware6 
[1] School of Biological Sciences, Royal Holloway, University of London, Egham, UK;International AIDS Vaccine Initiative Human Immunology Laboratory, Faculty of Medicine, Imperial College London, London, UK;Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK;Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany;Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany;Department of Medicine, Section of Immunology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK;Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
关键词: Leishmaniasis;    Nitric oxide;    Monocytes;    Macrophages;    Arginase;   
Others  :  1130862
DOI  :  10.1186/1743-7075-11-51
 received in 2014-05-20, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases.

Methods

In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication.

Results

Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth.

Conclusions

Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

【 授权许可】

   
2014 Corware et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150228085220660.pdf 839KB PDF download
Figure 5. 36KB Image download
Figure 4. 44KB Image download
Figure 3. 26KB Image download
Figure 2. 20KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Katona P, Katona-Apte J: The interaction between nutrition and infection. Clin Infect Dis 2008, 46:1582-1588.
  • [2]Bhutta ZA, Salam RA: Global nutrition epidemiology and trends. Ann Nutr Metab 2012, 61(Suppl 1):19-27.
  • [3]Beisel WR: Nutrition in pediatric HIV infection: setting the research agenda. Nutrition and immune function: overview. J Nutr 1996, 126:2611S-2615S.
  • [4]Schaible UE, Kaufmann SH: Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 2007, 4:e115.
  • [5]Woodward B: Protein, calories, and immune defenses. Nutr Rev 1998, 56:S84-S92.
  • [6]Chandra RK: Nutrition and immunity in the elderly. Nutr Res Rev 1991, 4:83-95.
  • [7]Najera O, Gonzalez C, Toledo G, Lopez L, Cortes E, Betancourt M, Ortiz R: CD45RA and CD45RO isoforms in infected malnourished and infected well-nourished children. Clin Exp Immunol 2001, 126:461-465.
  • [8]Rodriguez L, Gonzalez C, Flores L, Jimenez-Zamudio L, Graniel J, Ortiz R: Assessment by flow cytometry of cytokine production in malnourished children. Clin Diagn Lab Immunol 2005, 12:502-507.
  • [9]Redmond HP, Leon P, Lieberman MD, Hofmann K, Shou J, Reynolds JV, Goldfine J, Johnston RB Jr, Daly JM: Impaired macrophage function in severe protein-energy malnutrition. Arch Surg 1991, 126:192-196.
  • [10]de la Fuente M, Munoz ML: Impairment of phagocytic process in macrophages from young and old mice by protein malnutrition. Ann Nutr Metab 1992, 36:41-47.
  • [11]Schaffer MR, Tantry U, Ahrendt GM, Wasserkrug HL, Barbul A: Acute protein-calorie malnutrition impairs wound healing: a possible role of decreased wound nitric oxide synthesis. J Am Coll Surg 1997, 184:37-43.
  • [12]Fock RA, Rogero MM, Vinolo MA, Curi R, Borges MC, Borelli P: Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages. Inflammation 2010, 33:101-109.
  • [13]Munder M: Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 2009, 158:638-651.
  • [14]Morris SM Jr: Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 2009, 157:922-930.
  • [15]Morris SM Jr: Arginases and arginine deficiency syndromes. Curr Opin Clin Nutr Metab Care 2012, 15:64-70.
  • [16]Nagaraj S, Gabrilovich DI: Myeloid-derived suppressor cells in human cancer. Cancer J 2010, 16:348-353.
  • [17]Bronte V, Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005, 5:641-654.
  • [18]Ochoa AC, Zea AH, Hernandez C, Rodriguez PC: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007, 13:721s-726s.
  • [19]Morris SM Jr: Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 2004, 7:45-51.
  • [20]Cloke T, Garvery L, Choi BS, Abebe T, Hailu A, Hancock M, Kadolsky U, Bangham CRM, Munder M, Müller I, Taylor GP, Kropf P: Increased arginase activity correlates with disease severity in HIV seropositive patients. J Infect Dis 2010, 202:374-385.
  • [21]Takele Y, Abebe T, Weldegebreal T, Hailu A, Hailu W, Ali J, Diro E, Sisay Y, Cloke T, Modolell M, Munder M, Müller I, Kropf P: Arginase activity in the blood of patients with visceral leishmaniasis and HIV infection. PLoS NTD 2012, 7:e1977.
  • [22]Abebe T, Takele T, Weldegebreal T, Cloke T, Closs E, Corset C, Hailu A, Hailu W, Sisay Y, Corware K, Modolell M, Munder M, Tacchini-Cottier F, Müller I, Kropf P: Arginase: a marker of disease status in patients with visceral leishmaniasis. PLoS NTD 2013, 7:e2134.
  • [23]Abebe T, Hailu A, Woldeyes M, Mekonene W, Bilch K, Cloke T, Fry L, al Basatena N-K S, Corware K, Modolell M, Munder M, Tacchini-Cottier F, Müller I, Kropf P: Local increase of arginase activity in lesions of patients with cutaneous leishmaniasis in Ethiopia. PLoS NTD 2012, 6:e1684.
  • [24]Malafaia G: Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol 2009, 31:587-596.
  • [25]Han JM, Levings MK: Immune regulation in obesity-associated adipose inflammation. J Immunol 2013, 191:527-532.
  • [26]Kropf P, Fuentes JM, Fahnrich E, Arpa L, Herath S, Weber V, Soler G, Celada A, Modolell M, Muller I: Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. Faseb J 2005, 19:1000-1002.
  • [27]Munder M, Mollinedo F, Calafat J, Canchado J, Gil-Lamaignere C, Fuentes JM, Luckner C, Doschko G, Soler G, Eichmann K, Müller FM, Ho AD, Goerner M, Modolell M: Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 2005, 105:2549-2556.
  • [28]Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M: Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 1999, 163:3771-3777.
  • [29]Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, Bangham CR, Taylor GP, Herath S, Choi BS, Soler G, Teoh T, Modolell M, Muller I: Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 2007, 37:935-945.
  • [30]Modolell M, Choi B-S, Ryan RO, Hancock M, Titus RG, Abebe T, Hailu A, Müller I, Rogers M, Bangham CRB, Munder M, Kropf P: Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis. PLoS Negl Trop Dis 2009, 14:e480.
  • [31]Kropf P, Brunson K, Etges R, Müller I: The Leishmaniasis Model. In Immunology of Infection. Volume 25. 1st edition. San Diego: Academic; 1998:419-458. [Kaufmann SHE, Kabelitz D (Series Editor): Methods in Microbiology]
  • [32]Gordon S, Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005, 5:953-964.
  • [33]Shi C, Pamer EG: Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011, 11:762-774.
  • [34]Morley JE: Undernutrition in older adults. Fam Pract 2012, 29(Suppl 1):i89-i93.
  • [35]Borelli P, Barros FE, Nakajima K, Blatt SL, Beutler B, Pereira J, Tsujita M, Favero GM, Fock RA: Protein-energy malnutrition halts hemopoietic progenitor cells in the G0/G1 cell cycle stage, thereby altering cell production rates. Braz J Med Biol Res 2009, 42:523-530.
  • [36]Mirkovich AM, Galelli A, Allison AC, Modabber FZ: Increased myelopoiesis during Leishmania major infection in mice: generation of ‘safe targets’, a possible way to evade the effector immune mechanism. Clin Exp Immunol 1986, 64:1-7.
  • [37]Hoover DL, Nacy CA: Macrophage activation to kill Leishmania tropica: defective intracellular killing of amastigotes by macrophages elicited with sterile inflammatory agents. J Immunol 1984, 132:1487-1493.
  • [38]Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, Wild B, Camargo SM, Singer D, Richter A, Kuba K, Fukamizu A, Schreiber S, Clevers H, Verrey F, Rosenstiel P, Penninger JM: ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012, 487:477-481.
  • [39]Bando JK, Nussbaum JC, Liang HE, Locksley RM: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung. J Leukoc Biol 2013, 94:877-884.
  • [40]Teshima S, Rokutan K, Takahashi M, Nikawa T, Kido Y, Kishi K: Alteration of the respiratory burst and phagocytosis of macrophages under protein malnutrition. J Nutr Sci Vitaminol (Tokyo) 1995, 41:127-137.
  • [41]Redmond HP, Shou J, Kelly CJ, Leon P, Daly JM: Protein-calorie malnutrition impairs host defense against Candida albicans. J Surg Res 1991, 50:552-559.
  • [42]Wang C, Yu X, Cao Q, Wang Y, Zheng G, Tan TK, Zhao H, Zhao Y, Harris D: Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol 2013, 14:6. BioMed Central Full Text
  • [43]Muller I, Hailu A, Choi BS, Abebe T, Fuentes JM, Munder M, Modolell M, Kropf P: Age-related alteration of arginase activity impacts on severity of leishmaniasis. PLoS Negl Trop Dis 2008, 2:e235.
  • [44]Agarwal PK, Agarwal KN, Agarwal DK: Biochemical changes in saliva of malnourished children. Am J Clin Nutr 1984, 39:181-184.
  • [45]Cloke T, Munder M, Bergin P, Herath S, Modolell M, Taylor GP, Müller I, Kropf P: Phenotypic alteration of neutrophils in the blood of HIV seropositive patients. PLoS One 2013, 8:e72034.
  • [46]Zea AH, Culotta KS, Ali J, Mason C, Park HJ, Zabaleta J, Garcia LF, Ochoa AC: Decreased expression of CD3 zeta and nuclear transcription factor kappa B in patients with pulmonary tuberculosis: potential mechanisms and reversibility with treatment. J Infect Dis 2006, 194:1385-1393.
  • [47]Popovic PJ, Zeh HJ 3rd, Ochoa JB: Arginine and immunity. J Nutr 2007, 137:1681S-1686S.
  • [48]Munder M, Choi B-S, Rogers M, Kropf P: L-arginine deprivation impairs Leishmania major-specific T cell responses. Eur J Immunol 2009, 39:2161-2172.
  • [49]Padilla H, Sanchez A, Powell RN, Umezawa C, Swendseid ME, Prado PM, Sigala R: Plasma amino acids in children from Guadalajara with kwashiorkor. Am J Clin Nutr 1971, 24:353-357.
  • [50]Poeze M, Bruins MJ, Luiking YC, Deutz NE: Reduced caloric intake during endotoxemia reduces arginine availability and metabolism. Am J Clin Nutr 2010, 91:992-1001.
  • [51]Moyano D, Vilaseca MA, Artuch R, Lambruschini N: Plasma amino acids in anorexia nervosa. Eur J Clin Nutr 1998, 52:684-689.
  • [52]Roth E: Immune and cell modulation by amino acids. Clin Nutr 2007, 26:535-544.
  • [53]Hasko G, Kuhel DG, Marton A, Nemeth ZH, Deitch EA, Szabo C: Spermine differentially regulates the production of interleukin-12 p40 and interleukin-10 and suppresses the release of the T helper 1 cytokine interferon-gamma. Shock 2000, 14:144-149.
  • [54]Perez-Cano FJ, Franch A, Castellote C, Castell M: Immunomodulatory action of spermine and spermidine on NR8383 macrophage line in various culture conditions. Cell Immunol 2003, 226:86-94.
  • [55]Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey KJ: Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: A counterregulatory mechanism that restrains the immune response. J Exp Med 1997, 185:1759-1768.
  • [56]Choi BS, Martinez-Falero IC, Corset C, Munder M, Modolell M, Muller I, Kropf P: Differential impact of L-arginine deprivation on the activation and effector functions of T cells and macrophages. J Leukoc Biol 2009, 85:268-277.
  • [57]El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, Basaraba RJ, Konig T, Schleicher U, Koo MS, Kaplan G, Fitzgerald KA, Tuomanen EI, Orme IM, Kanneganti TD, Bogdan C, Wynn TA, Murray PJ: Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 2008, 9:1399-1406.
  文献评价指标  
  下载次数:10次 浏览次数:7次