期刊论文详细信息
Virology Journal
HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection
Katharina Gaus2  Johnson Mak1  Dylan M Owen2  Jérémie Rossy2  Cândida F Pereira3 
[1] Commonwealth Scientific and Industrial Research Organization, Australian Animal Health Laboratory, Geelong, Australia;Centre for Vascular Research, University of New South Wales, Sydney, Australia;Department of Medicine, Monash University, Clayton, Australia
关键词: Protein rearrangement;    Dynamic movement;    Viruses;    Electron microscopy;    Super-resolution microscopy;    HIV;   
Others  :  1154768
DOI  :  10.1186/1743-422X-9-84
 received in 2011-11-09, accepted in 2012-05-02,  发布年份 2012
PDF
【 摘 要 】

Background

The visualization of viral proteins has been hindered by the resolution limit of conventional fluorescent microscopes, as the dimension of any single fluorescent signal is often greater than most virion particles. Super-resolution microscopy has the potential to unveil the distribution of proteins at the resolution approaching electron microscopy without relying on morphological features of existing characteristics of the biological specimen that are needed in EM.

Results

Using direct stochastic optical reconstruction microscopy (dSTORM) to achieve a lateral resolution of 15–20 nm, we quantified the 2-D molecular distribution of the major structural proteins of the infectious human immunodeficiency virus type 1 (HIV-1) before and after infection of lymphoid cells. We determined that the HIV-1 matrix and capsid proteins undergo restructuring soon after HIV-1 infection.

Conclusions

This study provides the proof-of-concept for the use of dSTORM to visualize the changes in the molecular distribution of viral proteins during an infection.

【 授权许可】

   
2012 Pereira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407110316997.pdf 1007KB PDF download
Figure 2. 70KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Briggs JA, Grunewald K, Glass B, Forster F, Krausslich HG, Fuller SD: The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 2006, 14:15-20.
  • [2]Goto T, Nakai M, Ikuta K: The life-cycle of human immunodeficiency virus type 1. Micron 1998, 29:123-138.
  • [3]Miller MD, Farnet CM, Bushman FD: Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 1997, 71:5382-5390.
  • [4]Karageorgos L, Li P, Burrell C: Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses 1993, 9:817-823.
  • [5]Yamashita M, Perez O, Hope TJ, Emerman M: Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 2007, 3:1502-1510.
  • [6]Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, Shorte S, Charneau P: Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 2006, 3:817-824.
  • [7]McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ: Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002, 159:441-452.
  • [8]Rust MJ, Bates M, Zhuang X: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006, 3:793-795.
  • [9]Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF: Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313:1642-1645.
  • [10]Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M: Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 2008, 47:6172-6176.
  • [11]Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J: Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 2007, 104:17370-17375.
  • [12]Eckhardt M, Anders M, Muranyi W, Heilemann M, Krijnse-Locker J, Muller B: A SNAP-tagged derivative of HIV-1–a versatile tool to study virus-cell interactions. PLoS One 2011, 6:e22007.
  • [13]Lehmann M, Rocha S, Mangeat B, Blanchet F, Uji IH, Hofkens J, Piguet V: Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog 2011, 7:e1002456.
  • [14]Pereira CF, Ellenberg PC, Jones KL, Fernandez TL, Smyth RP, Hawkes DJ, Hijnen M, Vivet-Boudou V, Marquet R, Johnson I, Mak J: Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system. PLoS One 2011, 6:e17016.
  • [15]Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K: Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 2011, 12:655-662.
  • [16]Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K: PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 2010, 3:446-454.
  • [17]Welker R, Hohenberg H, Tessmer U, Huckhagel C, Krausslich HG: Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol 2000, 74:1168-1177.
  • [18]Harada S, Koyanagi Y, Yamamoto N: Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science 1985, 229:563-566.
  • [19]Haertle T, Carrera CJ, Wasson DB, Sowers LC, Richman DD, Carson DA: Metabolism and anti-human immunodeficiency virus-1 activity of 2-halo-2′,3′-dideoxyadenosine derivatives. J Biol Chem 1988, 263:5870-5875.
  • [20]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
  • [21]He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR: Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 1995, 69:6705-6711.
  • [22]Connor RI, Chen BK, Choe S, Landau NR: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995, 206:935-944.
  • [23]O’Doherty U, Swiggard WJ, Malim MH: Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 2000, 74:10074-10080.
  • [24]Simm M, Shahabuddin M, Chao W, Allan JS, Volsky DJ: Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. J Virol 1995, 69:4582-4586.
  • [25]Perry GLW: SpPack:spatial point pattern analysis in Excel using Visual Basic for Applications (VBA). Environ Model Softw 2004, 19:559-569.
  • [26]Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics Int 2004, 11:36-42.
  文献评价指标  
  下载次数:38次 浏览次数:30次