| Particle and Fibre Toxicology | |
| Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes | |
| Lihua Xiao1  Yaoyu Feng3  Shiyou Liu1  Na Li3  Michael A. Frace2  Dawn M. Roellig1  Lori A. Rowe2  Longxian Zhang4  Yaqiong Guo1  Kevin Tang2  | |
| [1] Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta 30333, GA, USA;Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta 30333, GA, USA;State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China;College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China | |
| 关键词: Molecular diagnosis; Mitochondria; Apicoplast; Genome; Genomics; Cyclospora; | |
| Others : 1222256 DOI : 10.1186/s13071-015-0966-3 |
|
| received in 2015-05-11, accepted in 2015-06-25, 发布年份 2015 | |
【 摘 要 】
Background
Cyclospora cayetanensis is an important cause for diarrhea in children in developing countries and foodborne outbreaks of cyclosporiasis in industrialized nations. To improve understanding of the basic biology of Cyclospora spp. and development of molecular diagnostic tools and therapeutics, we sequenced the complete apicoplast and mitochondrial genomes of C. cayetanensis.
Methods
The genome of one Chinese C. cayetanensis isolate was sequenced using Roche 454 and Illumina technologies. The assembled genomes of the apicoplast and mitochondrion were retrieved, annotated, and compared with reference genomes for other apicomplexans to infer genome organizations and phylogenetic relationships. Sequence variations in the mitochondrial genome were identified by comparison of two C. cayetanensis nucleotide sequences from this study and a recent publication.
Results
The apicoplast and mitochondrial genomes of C. cayetanensis are 34,155 and 6,229 bp in size and code for 65 and 5 genes, respectively. Comparative genomic analysis showed high similarities between C. cayetanensis and Eimeria tenella in both genomes; they have 85.6 % and 90.4 % nucleotide sequence similarities, respectively, and complete synteny in gene organization. Phylogenetic analysis of the genomic sequences confirmed the genetic similarities between cecum-infecting avian Eimeria spp. and C. cayetanensis. Like in other coccidia, both genomes of C. cayetanensis are transcribed bi-directionally. The apicoplast genome is circular, codes for the complete machinery for protein biosynthesis, and contains two inverted repeats that differ slightly in LSU rRNA gene sequences. In contrast, the mitochondrial genome has a linear concatemer or circular mapping topology. Eight single-nucleotide and one 7-bp multiple-nucleotide variants were detected between the mitochondrial genomes of C. cayetanensis from this and recent studies.
Conclusions
The apicoplast and mitochondrial genomes of C. cayetanensis are highly similar to those of cecum-infecting avian Eimeria spp. in both genome organization and sequences. The availability of sequence data beyond rRNA and heat shock protein genes could facilitate studies of C. cayetanensis biology and development of genotyping tools for investigations of cyclosporiasis outbreaks.
【 授权许可】
2015 Tang et al.
| Files | Size | Format | View |
|---|---|---|---|
| Fig. 6. | 205KB | Image | |
| Fig. 5. | 63KB | Image | |
| Fig. 4. | 50KB | Image | |
| Fig. 3. | 137KB | Image | |
| Fig. 2. | 13KB | Image | |
| Fig. 1. | 53KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Deodhar L, Maniar JK, Saple DG. Cyclospora infection in acquired immunodeficiency syndrome. J Assoc Physicians India. 2000; 48(4):404-6.
- [2]Ortega YR, Sanchez R. Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin Microbiol Rev. 2010; 23(1):218-34.
- [3]Legua P, Seas C. Cystoisospora and cyclospora. Curr Opin Infect Dis. 2013; 26(5):479-83.
- [4]Abanyie F, Harvey RR, Harris JR, Wiegand RE, Gaul L, Desvignes-Kendrick M, et al. 2013 multistate outbreaks of Cyclospora cayetanensis infections associated with fresh produce: focus on the Texas investigations. Epidemiol Infect. 2015:1–8.
- [5]Zhou Y, Lv B, Wang Q, Wang R, Jian F, Zhang L et al.. Prevalence and molecular characterization of Cyclospora cayetanensis, Henan, China. Emerg Infect Dis. 2011; 17(10):1887-90.
- [6]Sulaiman IM, Ortega Y, Simpson S, Kerdahi K. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus. Infect Genet Evol. 2014; 22:229-34.
- [7]Sulaiman IM, Torres P, Simpson S, Kerdahi K, Ortega Y. Sequence characterization of heat shock protein gene of Cyclospora cayetanensis isolates from Nepal, Mexico, and Peru. J Parasitol. 2013; 99(2):379-82.
- [8]Olivier C, van de Pas S, Lepp PW, Yoder K, Relman DA. Sequence variability in the first internal transcribed spacer region within and among Cyclospora species is consistent with polyparasitism. Int J Parasitol. 2001; 31(13):1475-87.
- [9]Riner DK, Nichols T, Lucas SY, Mullin AS, Cross JH, Lindquist HD. Intragenomic sequence variation of the ITS-1 region within a single flow-cytometry-counted Cyclospora cayetanensis oocysts. J Parasitol. 2010; 96(5):914-9.
- [10]Clark EL, Blake DP. Genetic mapping and coccidial parasites: past achievements and future prospects. J Biosci. 2012; 37(5):879-86.
- [11]Klinger CM, Nisbet RE, Ouologuem DT, Roos DS, Dacks JB. Cryptic organelle homology in apicomplexan parasites: insights from evolutionary cell biology. Curr Opin Microbiol. 2013; 16(4):424-31.
- [12]van Dooren GG, Striepen B. The algal past and parasite present of the apicoplast. Annu Rev Microbiol. 2013; 67:271-89.
- [13]Goodman CD, McFadden GI. Targeting apicoplasts in malaria parasites. Expert Opin Ther Targets. 2013; 17(2):167-77.
- [14]Stocks PA, Barton V, Antoine T, Biagini GA, Ward SA, O’Neill PM. Novel inhibitors of the Plasmodium falciparum electron transport chain. Parasitology. 2014; 141(1):50-65.
- [15]Nixon GL, Pidathala C, Shone AE, Antoine T, Fisher N, O’Neill PM et al.. Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med Chem. 2013; 5(13):1573-91.
- [16]Preston MD, Campino S, Assefa SA, Echeverry DF, Ocholla H, Amambua-Ngwa A et al.. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun. 2014; 5:4052.
- [17]Rodrigues PT, Alves JM, Santamaria AM, Calzada JE, Xayavong M, Parise M et al.. Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States. Am J Trop Med Hyg. 2014; 90(6):1102-8.
- [18]Tyagi S, Pande V, Das A. New insights into the evolutionary history of Plasmodium falciparum from mitochondrial genome sequence analyses of Indian isolates. Mol Ecol. 2014; 23(12):2975-87.
- [19]Ogedengbe JD, Hanner RH, Barta JR. DNA barcoding identifies Eimeria species and contributes to the phylogenetics of coccidian parasites (Eimeriorina, Apicomplexa, Alveolata). Int J Parasitol. 2011; 41(8):843-50.
- [20]Ogedengbe ME, Qvarnstrom Y, da Silva AJ, Arrowood MJ, Barta JR. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia. Int J Parasitol. 2015; 45(6):361-5.
- [21]Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: rapid annotation transfer tool. Nucleic Acids Res. 2011; 39(9): Article ID e57
- [22]Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005; 33(Web Server issue):W451-4.
- [23]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C et al.. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5(2):R12. BioMed Central Full Text
- [24]Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17(4):540-52.
- [25]Seeber F, Feagin JE, Parsons M. The apicoplast and mitochondrion of Toxoplasma gondii. In: Weiss LM, editor. Toxoplasma gondii: the model apicomplexan - perspectives and methods. 2nd ed.: Butterworth-Heinemann; 2014. p. 297–350.
- [26]Lang-Unnasch N, Aiello DP. Sequence evidence for an altered genetic code in the Neospora caninum plastid. Int J Parasitol. 1999; 29(10):1557-62.
- [27]Imura T, Sato S, Sato Y, Sakamoto D, Isobe T, Murata K et al.. The apicoplast genome of Leucocytozoon caulleryi, a pathogenic apicomplexan parasite of the chicken. Parasitol Res. 2014; 113(3):823-8.
- [28]Relman DA, Schmidt TM, Gajadhar A, Sogin M, Cross J, Yoder K et al.. Molecular phylogenetic analysis of Cyclospora, the human intestinal pathogen, suggests that it is closely related to Eimeria species. J Infect Dis. 1996; 173(2):440-5.
- [29]Eberhard ML, da Silva AJ, Lilley BG, Pieniazek NJ. Morphologic and molecular characterization of new Cyclospora species from Ethiopian monkeys: C. cercopitheci sp.n., C. colobi sp.n., and C. papionis sp.n. Emerg Infect Dis. 1999; 5(5):651-8.
- [30]Ye J, Xiao L, Li J, Huang W, Amer SE, Guo Y et al.. Occurrence of human-pathogenic Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium genotypes in laboratory macaques in Guangxi, China. Parasitol Int. 2014; 63(1):132-7.
- [31]Monteiro RM, Richtzenhain LJ, Pena HF, Souza SL, Funada MR, Gennari SM et al.. Molecular phylogenetic analysis in Hammondia-like organisms based on partial Hsp70 coding sequences. Parasitology. 2007; 134(Pt 9):1195-203.
- [32]Zhao GH, Cong MM, Bian QQ, Cheng WY, Wang RJ, Qi M et al.. Molecular characterization of Cyclospora-like organisms from golden snub-nosed monkeys in Qinling Mountain in Shaanxi province, northwestern China. PLoS ONE. 2013; 8(2): Article ID e58216
- [33]Ogedengbe ME, El-Sherry S, Whale J, Barta JR. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys. Parasit Vectors. 2014; 7:335. BioMed Central Full Text
- [34]Hikosaka K, Nakai Y, Watanabe Y, Tachibana S, Arisue N, Palacpac NM et al.. Concatenated mitochondrial DNA of the coccidian parasite Eimeria tenella. Mitochondrion. 2011; 11(2):273-8.
- [35]Eberhard ML, Ortega YR, Hanes DE, Nace EK, Do RQ, Robl MG et al.. Attempts to establish experimental Cyclospora cayetanensis infection in laboratory animals. J Parasitol. 2000; 86(3):577-82.
- [36]Alfano-Sobsey EM, Eberhard ML, Seed JR, Weber DJ, Won KY, Nace EK et al.. Human challenge pilot study with Cyclospora cayetanensis. Emerg Infect Dis. 2004; 10(4):726-8.
- [37]Saremy S, Boroujeni ME, Bhattacharjee B, Mittal V, Chatterjee J. Identification of potential apicoplast associated therapeutic targets in human and animal pathogen Toxoplasma gondii ME49. Bioinformation. 2011; 7(8):379-83.