Radiation Oncology | |
Reduced lung dose during radiotherapy for thoracic esophageal carcinoma: VMAT combined with active breathing control for moderate DIBH | |
Yong Yin1  Chengxin Liu1  Jinhu Chen1  Jie Lu1  Tonghai Liu1  Deyin Zhai1  Yujie Guo1  Ruozheng Wang1  Guanzhong Gong1  | |
[1] Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan 250117, China | |
关键词: Volumetric modulated arc radiotherapy; Active breathing control; Radiotherapy; Esophageal carcinoma; | |
Others : 829459 DOI : 10.1186/1748-717X-8-291 |
|
received in 2013-07-16, accepted in 2013-12-08, 发布年份 2013 | |
【 摘 要 】
Background
Lung radiation injury is a critical complication of radiotherapy (RT) for thoracic esophageal carcinoma (EC). Therefore, the goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH).
Methods
Fifteen patients with thoracic EC were randomly selected to undergo two series of computed tomography (CT) simulation scans with ABC used to achieve mDIBH (representing 80% of peak DIBH value) versus free breathing (FB). Gross tumor volumes were contoured on different CT images, and planning target volumes (PTVs) were obtained using different margins. For PTV-FB, intensity-modulated radiotherapy (IMRT) was designed with seven fields, and VMAT included two whole arcs. For PTV-DIBH, VMAT with three 135° arcs was applied, and the corresponding plans were named: IMRT-FB, VMAT-FB, and VMAT-DIBH, respectively. Dosimetric differences between the different plans were compared.
Results
The heart volumes decreased by 19.85%, while total lung volume increased by 52.54% in mDIBH, compared to FB (p < 0.05). The mean conformality index values and homogeneity index values for VMAT-DIBH (0.86, 1.07) were slightly worse than those for IMRT-FB (0.90, 1.05) and VMAT-FB (0.90, 1.06) (p > 0.05). Furthermore, compared to IMRT-FB and VMAT-FB, VMAT-DIBH reduced the mean total lung dose by 18.64% and 17.84%, respectively (p < 0.05); moreover, the V5, V10, V20, and V30 values for IMRT-FB and VMAT-FB were reduced by 10.84% and 10.65% (p > 0.05), 12.5% and 20% (p < 0.05), 30.77% and 33.33% (p < 0.05), and 50.33% and 49.15% (p < 0.05), respectively. However, the heart dose-volume indices were similar between VMAT-DIBH and VMAT-FB which were lower than IMRT-FB without being statistically significant (p > 0.05). The monitor units and treatment time of VMAT-DIBH were also the lowest (p < 0.05).
Conclusions
VMAT combined with ABC to achieve mDIBH is a feasible approach for RT of thoracic EC. Furthermore, this method has the potential to effectively reduce lung dose in a shorter treatment time and with better targeting accuracy.
【 授权许可】
2013 Gong et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140714070725652.pdf | 210KB | download |
【 参考文献 】
- [1]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62:10-29.
- [2]Shahbaz Sarwar CM, Luketich JD, Landreneau RJ, Abbas G: Esophageal cancer: an update. Int J Surg 2010, 8:417-422.
- [3]Pantling AZ, Gossage JA, Mamidanna R, Newman G, Robinson A, Manifold DK, Hale PC: Outcomes from chemoradiotherapy for patients with esophageal cancer. Dis Esophagus 2011, 24:172-176.
- [4]Zhang J, Peng F, Li N, Liu Y, Xu Y, Zhou L, Wang J, Zhu J, Huang M, Gong Y: Salvage concurrent radio-chemotherapy for post-operative local recurrence of squamous-cell esophageal cancer. Radiat Oncol 2012, 7:93. BioMed Central Full Text
- [5]Tu L, Sun L, Xu Y, Wang Y, Zhou L, Liu Y, Zhu J, Peng F, Wei Y, Gong Y: Paclitaxel and cisplatin combined with intensity-modulated radiotherapy for upper esophageal carcinoma. Radiat Oncol 2013, 8:75. BioMed Central Full Text
- [6]Fakhrian K, Gamisch N, Schuster T, Thamm R, Molls M, Geinitz H: Salvage radiotherapy in patients with recurrent esophageal carcinoma. Strahlenther Onkol 2012, 188:136-142.
- [7]Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu C, Ajani JA, Phan A, Swisher SG, Mohan R, Cox JD, Komaki R: Association between systemic chemotherapy before chemoradiation and increased risk of treatment-related pneumonitis in esophageal cancer patients treated with definitive chemoradiotherapy. J Thorac Oncol 2008, 3:277-282.
- [8]Mizumoto M, Sugahara S, Nakayama H, Hashii H, Nakahara A, Terashima H, Okumura T, Tsuboi K, Tokuuye K, Sakurai H: Clinical results of proton-beam therapy for locoregionally advanced esophageal cancer. Strahlenther Onkol 2010, 186:482-488.
- [9]Vosmik M, Petera J, Sirak I, Hodek M, Paluska P, Dolezal J, Kopacova M: Technological advances in radiotherapy for esophageal cancer. World J Gastroenterol 2010, 16:5555-5564.
- [10]Benthuysen L, Hales L, Podgorsak MB: Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer. Med Dosim 2011, 36:404-409.
- [11]Vivekanandan N, Sriram P, Kumar SA, Bhuvaneswari N, Saranya K: Volumetric modulated arc radiotherapy for esophageal cancer. Med Dosim 2012, 37:108-113.
- [12]Martin S, Chen JZ, Rashid Dar A, Yartsev S: Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma. Radiother Oncol 2011, 101:431-437.
- [13]Yin Y, Chen J, Xing L, Dong X, Liu T, Lu J, Yu J: Applications of IMAT in cervical esophageal cancer radiotherapy: a comparison with fixed-field IMRT in dosimetry and implementation. J Appl Clin Med Phys 2011, 12:48-57.
- [14]Wang PM, Hsu WC, Chung NN, Chang FL, Fogliata A, Cozzi L: Radiation treatment with volumetric modulated arc therapy of hepatocellular carcinoma patients. Early clinical outcome and toxicity profile from a retrospective analysis of 138 patients. Radiat Oncol 2012, 7:207. BioMed Central Full Text
- [15]Richetti A, Fogliata A, Clivio A, Nicolini G, Pesce G, Salati E, Vanetti E, Cozzi L: Neo-adjuvant chemo-radiation of rectal cancer with volumetric modulated arc therapy: summary of technical and dosimetric features and early clinical experience. Radiat Oncol 2010, 5:14. BioMed Central Full Text
- [16]Pesce GA, Clivio A, Cozzi L, Nicolini G, Richetti A, Salati E, Valli M, Vanetti E, Fogliata A: Early clinical experience of radiotherapy of prostate cancer with volumetric modulated arc therapy. Radiat Oncol 2010, 5:54. BioMed Central Full Text
- [17]Wolff HA, Wagner DM, Christiansen H, Hess CF, Vorwerk H: Single fraction radiosurgery using Rapid Arc for treatment of intracranial targets. Radiat Oncol 2010, 5:77. BioMed Central Full Text
- [18]Scorsetti M, Alongi F, Fogliata A, Pentimalli S, Navarria P, Lobefalo F, Garcia-Etienne C, Clivio A, Cozzi L, Mancosu P, Nicolini G, Vanetti E, Eboli M, Rossetti C, Rubino A, Sagona A, Arcangeli S, Gatzemeier W, Masci G, Torrisi R, Testori A, Alloisio M, Santoro A, Tinterri C: Phase I-II study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments. Radiat Oncol 2012, 7:145. BioMed Central Full Text
- [19]Sriram P, Syamkumar SA, Kumar JS, Prabakar S, Dhanabalan R, Vivekanandan N: Adaptive volumetric modulated arc treatment planning for esophageal cancers using cone beam computed tomography. Phys Med 2012, 28:327-332.
- [20]Yamashita H, Kida S, Sakumi A, Haga A, Ito S, Onoe T, Okuma K, Ino K, Akahane M, Ohtomo K, Nakagawa K: Four-dimensional measurement of the displacement of internal fiducial markers during 320-multislice computed tomography scanning of thoracic esophageal cancer. Int J Radiat Oncol Biol Phys 2011, 79:588-595.
- [21]Lorchel F, Dumas JL, Noël A, Wolf D, Bosset JF, Aletti P: Esophageal cancer: determination of internal target volume for conformal radiotherapy. Radiother Oncol 2006, 80:327-332.
- [22]Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, Martinez AA: The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999, 44:911-919.
- [23]Patel AA, Wolfgang JA, Niemierko A, Hong TS, Yock T, Choi NC: Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer. Int J Radiat Oncol Biol Phys 2009, 74:290-296.
- [24]Asakura H, Hashimoto T, Zenda S, Harada H, Hirakawa K, Mizumoto M, Furutani K, Hironaka S, Fuji H, Murayama S, Boku N, Nishimura T: Analysis of dose-volume histogram parameters for radiation pneumonitis after definitive concurrent chemoradiotherapy for esophageal cancer. Radiother Oncol 2010, 95:240-244.
- [25]Cilla S, Macchia G, Digesù C, Deodato F, Romanella M, Ferrandina G, Padula GD, Picardi V, Scambia G, Piermattei A, Morganti AG: 3D-Conformal versus intensity-modulated postoperative radiotherapy of vaginal vault: a dosimetric comparison. Med Dosim 2010, 35:135-142.
- [26]Blom Goldman U, Wennberg B, Svane G, Bylund H, Lind P: Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol 2010, 5:99. BioMed Central Full Text
- [27]Vogelius IR, Bentzen SM: A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Acta Oncol 2012, 51:975-983.
- [28]Dang J, Li G, Ma L, Diao R, Zang S, Han C, Zhang S, Yao L: Predictors of grade ≥ 2 and grade ≥ 3 radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with three-dimensional conformal radiotherapy. Acta Oncol 2012, 52:1175-1180.
- [29]Yang GY, McClosky SA, Khushalani NI: Principles of modern radiation techniques for esophageal and gastroesophageal junction cancers. Gastrointest Cancer Res 2009, 3(2 Suppl):S6-S10.
- [30]Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI: Incidence of radiation pneumonitis after thoracic irradiation: dose-volume correlates. Int J Radiat Oncol Biol Phys 2007, 67:410-416.
- [31]Wang SL, Liao Z, Vaporciyan AA, Tucker SL, Liu H, Wei X, Swisher S, Ajani JA, Cox JD, Komaki R: Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 2006, 64:692-699.
- [32]Vogelius IS, Westerly DC, Cannon GM, Bentzen SM: Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques. Acta Oncol 2010, 49:1052-1057.
- [33]Gong GZ, Yin Y, Xing LG, Guo YJ, Liu T, Chen J, Lu J, Ma C, Sun T, Bai T, Zhang G, Wang R: RapidArc combined with the active breathing coordinator provides an effective and accurate approach for the radiotherapy of hepatocellular carcinoma. Strahlenther Onkol 2012, 188:262-268.
- [34]Guckenberger M, Richter A, Krieger T, Wilbert J, Baier K, Flentje M: Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol 2009, 93:259-265.
- [35]Paumier A, Ghalibafian M, Gilmore J, Beaudre A, Blanchard P, el Nemr M, Azoury F, al Hamokles H, Lefkopoulos D, Girinsky T: Dosimetric benefits of intensity-modulated radiotherapy combined with the deep-inspiration breath-hold technique in patients with mediastinal Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 2012, 82:1522-1527.
- [36]Liao Z, Cox JD, Komaki R: Radiochemotherapy of esophageal cancer. J Thorac Oncol 2007, 2:553-568.
- [37]Pasler M, Wirtz H, Lutterbach J: Impact of gantry rotation time on plan quality and dosimetric verification–volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT). Strahlenther Onkol 2011, 187:812-819.
- [38]Wolf M, Zehentmayr F, Niyazi M, Ganswindt U, Haimerl W, Schmidt M, Hölzel D, Belka C: Long-term outcome of mitomycin C– and 5-FU-based primary radiochemotherapy for esophageal cancer. Strahlenther Onkol 2010, 186:374-381.
- [39]Patonay P, Naszály A, Mayer A: Simultaneous radiochemotherapy and endoluminal HDR brachytherapy in esophageal cancer. Strahlenther Onkol 2007, 183:94-98.