期刊论文详细信息
Nutrition & Metabolism
Inflamed macrophage microvesicles induce insulin resistance in human adipocytes
Dalong Zhu1  Xiao Han2  Yunxia Zhu2  Jiexin Zhang3  Hongliang Mei2  Li Shi2  Yaqin Zhang2 
[1] The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing 21008, Jiangsu, China;Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, Jiangsu, China;Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
关键词: Microvesicle;    Macrophage;    Human adipocyte;    Insulin resistance;   
Others  :  1211831
DOI  :  10.1186/s12986-015-0016-3
 received in 2015-03-19, accepted in 2015-05-27,  发布年份 2015
PDF
【 摘 要 】

Background

Cytokines secreted by adipose tissue macrophages (ATMs) significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. However, little relevant information is available regarding the role of microvesicles (MVs) derived from ATMs in macrophage-adipocyte crosstalk.

Methods

MVs were generated by stimulation of M1 or M2 phenotype THP-1 macrophages and incubated with human primary mature adipocytes and differentiated adipocytes. Subsequently, insulin-stimulated phosphorylation of Akt (pAkt) and glucose uptake were determined. Glucose transporter 4 (GLUT4) translocation and nuclear translocation of nuclear factor (NF)-kappa B were also analyzed in treated adipocytes.

Results

M1 macrophage-derived MVs (M1 MVs) significantly reduced protein abundance of insulin-induced Akt phosphorylation in human primary mature adipocytes and differentiated adipocytes, when compared with the same concentration of M2 macrophage-derived MVs (M2 MVs). In contrast to M2 MVs, which enhanced the insulin-induced glucose uptake measured by 2-NBDG, M1 MVs decreased this effect in treated adipocytes. M1 MVs treatment also brought about a significant increase in the nuclear translocation of nuclear factor (NF)-kappa B, coupled with a decrease in pAkt level and GLUT4 translocation compared with M2 MVs-treated adipocytes. These effects were reversed by BAY 11–7085, a NF- kappa B specific inhibitor.

Conclusions

MVs derived from proinflammatory (M1) macrophages may, at least in part, contribute to the pathogenesis of obesity-induced insulin resistance, reducing insulin signal transduction and decreasing glucose uptake in human adipocytes, through NF-kappa B activation. Therefore, these MVs may be potential therapy candidates for the management of type 2 diabetes mellitus.

【 授权许可】

   
2015 Zhang et al.

【 预 览 】
附件列表
Files Size Format View
20150611040042560.pdf 1819KB PDF download
Fig. 7. 59KB Image download
Fig. 6. 73KB Image download
Fig. 5. 45KB Image download
Fig. 4. 55KB Image download
Fig. 3. 52KB Image download
Fig. 2. 74KB Image download
Fig. 1. 67KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]de Luca C, Olefsky JM: Inflammation and insulin resistance. FEBS Lett 2008, 582:97-105.
  • [2]Lumeng CN, Bodzin JL, Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007, 117:175-84.
  • [3]Zeyda M, Stulnig TM: Adipose tissue macrophages. Immunol Lett 2007, 112:61-7.
  • [4]Morris DL, Singer K, Lumeng CN: Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care 2011, 14:341-6.
  • [5]Heilbronn LK, Campbell LV: Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 2008, 14:1225-30.
  • [6]Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, et al.: Interleukin-1beta mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 2014, 307:E289-304.
  • [7]Rotter V, Nagaev I, Smith U: Interleukin-6 (IL-6) induces insulin resistance in 3 T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003, 278:45777-84.
  • [8]Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K: Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 2007, 148:868-77.
  • [9]Lumeng CN, Deyoung SM, Saltiel AR: Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 2007, 292:E166-74.
  • [10]Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002, 2:569-79.
  • [11]Favaro E, Carpanetto A, Lamorte S, Fusco A, Caorsi C, Deregibus MC, et al.: Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia 2014, 57:1664-73.
  • [12]Terrisse AD, Puech N, Allart S, Gourdy P, Xuereb JM, Payrastre B, et al.: Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemost 2010, 8:2810-9.
  • [13]Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A: The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 2010, 26:140-5.
  • [14]Liu ML, Scalia R, Mehta JL, Williams KJ: Cholesterol-induced membrane microvesicles as novel carriers of damage-associated molecular patterns: mechanisms of formation, action, and detoxification. Arterioscler Thromb Vasc Biol 2012, 32:2113-21.
  • [15]Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al.: Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010, 39:133-44.
  • [16]Hulsmans M, Holvoet P: MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013, 100:7-18.
  • [17]Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, et al.: Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem 2013, 288:23586-96.
  • [18]McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, et al.: Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 2014, 155:1527-39.
  • [19]Cerri C, Chimenti D, Conti I, Neri T, Paggiaro P, Celi A: Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells. J Immunol 2006, 177:1975-80.
  • [20]Kranendonk ME, Visseren FL, van Balkom BW, Nolte-’t Hoen EN, van Herwaarden JA, de Jager W, et al.: Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 2014, 22:1296-308.
  • [21]Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al.: Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 2009, 58:2498-505.
  • [22]Brown JM, Halvorsen YD, Lea-Currie YR, Geigerman C, McIntosh M: Trans-10, cis-12, but not cis-9, trans-11, conjugated linoleic acid attenuates lipogenesis in primary cultures of stromal vascular cells from human adipose tissue. J Nutr 2001, 131:2316-21.
  • [23]Alonso-Castro AJ, Zapata-Bustos R, Gomez-Espinoza G, Salazar-Olivo LA: Isoorientin reverts TNF-alpha-induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinology 2012, 153:5222-30.
  • [24]Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH: The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010, 5:e8668.
  • [25]Zhang F, Liu H, Jiang G, Wang H, Wang X, Fang R, et al.: Changes in the proteomic profile during the differential polarization status of the human monocyte-derived macrophage THP-1 cell line. Proteomics 2015, 15:773-86.
  • [26]Cho KW, Morris DL, Lumeng CN: Flow cytometry analyses of adipose tissue macrophages. Methods Enzymol 2014, 537:297-314.
  • [27]Zhang Y, Li L, Yu J, Zhu D, Li X, Gu H, et al.: Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. Biomaterials 2014, 35:4390-400.
  • [28]Park SK, Oh SY, Lee MY, Yoon S, Kim KS, Kim JW: CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue. Diabetes 2004, 53:2757-66.
  • [29]Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al.: Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes 2012, 61:1616-25.
  • [30]Zou C, Wang Y, Shen Z: 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 2005, 64:207-15.
  • [31]Luciani N, Wilhelm C, Gazeau F: The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials 2010, 31:7061-9.
  • [32]Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y, et al.: Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 2011, 19:395-9.
  • [33]Saladin R, Fajas L, Dana S, Halvorsen YD, Auwerx J, Briggs M: Differential regulation of peroxisome proliferator activated receptor gamma1 (PPARgamma1) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ 1999, 10:43-8.
  • [34]Volchuk A, Narine S, Foster LJ, Grabs D, De Camilli P, Klip A: Perturbation of dynamin II with an amphiphysin SH3 domain increases GLUT4 glucose transporters at the plasma membrane in 3 T3-L1 adipocytes: dynamin II participates in GLUT4 endocytosis. J Biol Chem 1998, 273:8169-76.
  • [35]Perrini S, Natalicchio A, Laviola L, Belsanti G, Montrone C, Cignarelli A, et al.: Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 2004, 53:41-52.
  • [36]Baker RG, Hayden MS, Ghosh S: NF-kappaB, inflammation, and metabolic disease. Cell Metab 2011, 13:11-22.
  • [37]Wang XA, Zhang R, She ZG, Zhang XF, Jiang DS, Wang T, et al.: Interferon regulatory factor 3 constrains IKKbeta/NF-kappaB signaling to alleviate hepatic steatosis and insulin resistance. Hepatology 2014, 59:870-85.
  • [38]Bertrand F, Philippe C, Antoine PJ, Baud L, Groyer A, Capeau J, et al.: Insulin activates nuclear factor kappa B in mammalian cells through a Raf-1-mediated pathway. J Biol Chem 1995, 270:24435-41.
  • [39]Volk A, Li J, Xin J, You D, Zhang J, Liu X, et al.: Co-inhibition of NF-kappaB and JNK is synergistic in TNF-expressing human AML. J Exp Med 2014, 211:1093-108.
  • [40]Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al Abdulmohsen S, Platanias LC, et al.: Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One 2012, 7:e39945.
  • [41]Huh JY, Park YJ, Ham M, Kim JB: Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells 2014, 37:365-71.
  • [42]Liu Y, Zhao L, Li D, Yin Y, Zhang CY, Li J, et al.: Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development. Protein Cell 2013, 4:932-41.
  • [43]Medina EA, Afsari RR, Ravid T, Castillo SS, Erickson KL, Goldkorn T: Tumor necrosis factor-{alpha} decreases Akt protein levels in 3 T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology 2005, 146:2726-35.
  • [44]Xie L, Ortega MT, Mora S, Chapes SK: Interactive changes between macrophages and adipocytes. Clin Vaccine Immunol 2010, 17:651-9.
  • [45]Fite A, Abou-Samra AB, Seyoum B: Macrophages inhibit insulin signalling in adipocytes: role of inducible nitric oxide synthase and nitric oxide. Can J Diabetes 2015, 39:36-43.
  • [46]Rosen ED, Spiegelman BM: Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444:847-53.
  • [47]Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al.: Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409:729-33.
  • [48]Samuel VT, Shulman GI: Mechanisms for insulin resistance: common threads and missing links. Cell 2012, 148:852-71.
  文献评价指标  
  下载次数:81次 浏览次数:6次